These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31265424)

  • 21. Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity.
    Deshpande G; Li Z; Santhanam P; Coles CD; Lynch ME; Hamann S; Hu X
    PLoS One; 2010 Dec; 5(12):e14277. PubMed ID: 21151556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A machine learning based approach towards high-dimensional mediation analysis.
    Nath T; Caffo B; Wager T; Lindquist MA
    Neuroimage; 2023 Mar; 268():119843. PubMed ID: 36586543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Task-based co-activation patterns reliably predict resting state canonical network engagement during development.
    Ye F; Kohler R; Serio B; Lichenstein S; Yip SW
    Dev Cogn Neurosci; 2022 Dec; 58():101160. PubMed ID: 36270101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel sparse graphical approach for multimodal brain connectivity inference.
    Ng B; Varoquaux G; Poline JB; Thirion B
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):707-14. PubMed ID: 23285614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interpretable whole-brain prediction analysis with GraphNet.
    Grosenick L; Klingenberg B; Katovich K; Knutson B; Taylor JE
    Neuroimage; 2013 May; 72():304-21. PubMed ID: 23298747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An empirical solution for over-pruning with a novel ensemble-learning method for fMRI decoding.
    Hirose S; Nambu I; Naito E
    J Neurosci Methods; 2015 Jan; 239():238-45. PubMed ID: 25445247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning for post-traumatic stress disorder identification utilizing resting-state functional magnetic resonance imaging.
    Saba T; Rehman A; Shahzad MN; Latif R; Bahaj SA; Alyami J
    Microsc Res Tech; 2022 Jun; 85(6):2083-2094. PubMed ID: 35088496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
    Kim J; Calhoun VD; Shim E; Lee JH
    Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bayesian reconstruction of multiscale local contrast images from brain activity.
    Song S; Ma X; Zhan Y; Zhan Z; Yao L; Zhang J
    J Neurosci Methods; 2013 Oct; 220(1):39-45. PubMed ID: 23999175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resting-state functional connectivity in normal brain aging.
    Ferreira LK; Busatto GF
    Neurosci Biobehav Rev; 2013 Mar; 37(3):384-400. PubMed ID: 23333262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine.
    Kim J; Lee B
    Hum Brain Mapp; 2018 Sep; 39(9):3728-3741. PubMed ID: 29736986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emulative, coherent, and causal dynamics between large-scale brain networks are neurobiomarkers of Accelerated Cognitive Ageing in epilepsy.
    Bernas A; Breuer LEM; Aldenkamp AP; Zinger S
    PLoS One; 2021; 16(4):e0250222. PubMed ID: 33861794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning Brain Connectivity Sub-networks by Group- Constrained Sparse Inverse Covariance Estimation for Alzheimer's Disease Classification.
    Li Y; Liu J; Huang J; Li Z; Liang P
    Front Neuroinform; 2018; 12():58. PubMed ID: 30258358
    [No Abstract]   [Full Text] [Related]  

  • 36. Sparse Multiview Task-Centralized Ensemble Learning for ASD Diagnosis Based on Age- and Sex-Related Functional Connectivity Patterns.
    Wang J; Wang Q; Zhang H; Chen J; Wang S; Shen D
    IEEE Trans Cybern; 2019 Aug; 49(8):3141-3154. PubMed ID: 29994137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual Temporal and Spatial Sparse Representation for Inferring Group-Wise Brain Networks From Resting-State fMRI Dataset.
    Gong J; Liu X; Liu T; Zhou J; Sun G; Tian J
    IEEE Trans Biomed Eng; 2018 May; 65(5):1035-1048. PubMed ID: 28796604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.
    Forouzannezhad P; Abbaspour A; Fang C; Cabrerizo M; Loewenstein D; Duara R; Adjouadi M
    J Neurosci Methods; 2019 Apr; 317():121-140. PubMed ID: 30593787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regression-based machine-learning approaches to predict task activation using resting-state fMRI.
    Cohen AD; Chen Z; Parker Jones O; Niu C; Wang Y
    Hum Brain Mapp; 2020 Feb; 41(3):815-826. PubMed ID: 31638304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wavelet-Based Fractal Analysis of rs-fMRI for Classification of Alzheimer's Disease.
    Sadiq A; Yahya N; Tang TB; Hashim H; Naseem I
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.