These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31265429)

  • 1. Simultaneous Inference of Treatment Effect Modification by Intermediate Response Endpoint Principal Strata with Application to Vaccine Trials.
    Zhuang Y; Huang Y; Gilbert PB
    Int J Biostat; 2019 Jul; 16(1):. PubMed ID: 31265429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference on treatment effect modification by biomarker response in a three-phase sampling design.
    Juraska M; Huang Y; Gilbert PB
    Biostatistics; 2020 Jul; 21(3):545-560. PubMed ID: 30590450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Likelihood-based methods for evaluating principal surrogacy in augmented vaccine trials.
    Liu W; Zhang B; Zhang H; Zhang Z
    Stat Methods Med Res; 2017 Apr; 26(2):984-996. PubMed ID: 25549966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating principal surrogate markers in vaccine trials in the presence of multiphase sampling.
    Huang Y
    Biometrics; 2018 Mar; 74(1):27-39. PubMed ID: 28653408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and estimation for evaluating principal surrogate markers in vaccine trials.
    Huang Y; Gilbert PB; Wolfson J
    Biometrics; 2013 Jun; 69(2):301-9. PubMed ID: 23409839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of treatment effect modification by biomarkers measured pre- and post-randomization in the presence of non-monotone missingness.
    Zhuang Y; Huang Y; Gilbert PB
    Biostatistics; 2022 Apr; 23(2):541-557. PubMed ID: 32978622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SENSITIVITY ANALYSIS FOR EVALUATING PRINCIPAL SURROGATE ENDPOINTS RELAXING THE EQUAL EARLY CLINICAL RISK ASSUMPTION.
    Huang Y; Zhuang Y; Gilbert P
    Ann Appl Stat; 2022 Sep; 16(3):1774-1794. PubMed ID: 37008748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Overall Vaccine Efficacy in a New Setting by Re-Calibrating Baseline Covariate and Intermediate Response Endpoint Effect Modifiers of Type-Specific Vaccine Efficacy.
    Gilbert PB; Huang Y
    Epidemiol Methods; 2016 Dec; 5(1):93-112. PubMed ID: 28154793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analyses comparing outcomes only existing in a subset selected post-randomization, conditional on covariates, with application to HIV vaccine trials.
    Shepherd BE; Gilbert PB; Jemiai Y; Rotnitzky A
    Biometrics; 2006 Jun; 62(2):332-42. PubMed ID: 16918897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A randomized, double-blind, placebo-controlled phase III clinical trial to evaluate the efficacy and safety of SARS-CoV-2 vaccine (inactivated, Vero cell): a structured summary of a study protocol for a randomised controlled trial.
    Akova M; Unal S
    Trials; 2021 Apr; 22(1):276. PubMed ID: 33849629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A controlled effects approach to assessing immune correlates of protection.
    Gilbert PB; Fong Y; Kenny A; Carone M
    Biostatistics; 2023 Oct; 24(4):850-865. PubMed ID: 37850938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASSESSING SURROGATE ENDPOINTS IN VACCINE TRIALS WITH CASE-COHORT SAMPLING AND THE COX MODEL.
    Qin L; Gilbert PB; Follmann D; Li D
    Ann Appl Stat; 2008 Mar; 2(1):386-407. PubMed ID: 19079758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commentary on "Principal stratification - a goal or a tool?" by Judea Pearl.
    Gilbert PB; Hudgens MG; Wolfson J
    Int J Biostat; 2011; 7(1):Article 36. PubMed ID: 22049267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of a tetravalent dengue vaccine in healthy children aged 4-16 years: a randomised, placebo-controlled, phase 3 trial.
    Biswal S; Borja-Tabora C; Martinez Vargas L; Velásquez H; Theresa Alera M; Sierra V; Johana Rodriguez-Arenales E; Yu D; Wickramasinghe VP; Duarte Moreira E; Fernando AD; Gunasekera D; Kosalaraksa P; Espinoza F; López-Medina E; Bravo L; Tuboi S; Hutagalung Y; Garbes P; Escudero I; Rauscher M; Bizjajeva S; LeFevre I; Borkowski A; Saez-Llorens X; Wallace D;
    Lancet; 2020 May; 395(10234):1423-1433. PubMed ID: 32197105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Randomization and baseline transmission in vaccine field trials.
    Struchiner CJ; Halloran ME
    Epidemiol Infect; 2007 Feb; 135(2):181-94. PubMed ID: 17291359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the optimal surrogate based on a randomized trial.
    Price BL; Gilbert PB; van der Laan MJ
    Biometrics; 2018 Dec; 74(4):1271-1281. PubMed ID: 29701875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A controlled effects approach to assessing immune correlates of protection.
    Gilbert PB; Fong Y; Kenny A; Carone M
    Biostatistics; 2022 Jul; ():. PubMed ID: 35848843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety, immunogenicity and efficacy of a recombinant tetravalent dengue vaccine: a meta-analysis of randomized trials.
    da Costa VG; Marques-Silva AC; Floriano VG; Moreli ML
    Vaccine; 2014 Sep; 32(39):4885-92. PubMed ID: 25045816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiparametric pseudo-score and pseudo-likelihood for evaluating correlate of protection in vaccine trials.
    Ma W; Liu M; Zhu J; Li Q; Hoffman E; Lin J
    Stat Med; 2023 Aug; 42(19):3317-3332. PubMed ID: 37248751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining biomarkers for classification with covariate adjustment.
    Kim S; Huang Y
    Stat Med; 2017 Jul; 36(15):2347-2362. PubMed ID: 28276080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.