These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31265480)

  • 41. Properties of implanted electrodes for functional electrical stimulation.
    Popovic D; Gordon T; Rafuse VF; Prochazka A
    Ann Biomed Eng; 1991; 19(3):303-16. PubMed ID: 1928872
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays.
    Dowden BR; Frankel MA; Normann RA; Clark GA
    J Neural Eng; 2012 Feb; 9(1):016006. PubMed ID: 22173566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feasibility of differentially measuring afferent and efferent neural activity with a single nerve cuff electrode.
    Sabetian P; Yoo PB
    J Neural Eng; 2020 Jan; 17(1):016040. PubMed ID: 31698350
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective activation of small motor axons by quasi-trapezoidal current pulses.
    Fang ZP; Mortimer JT
    IEEE Trans Biomed Eng; 1991 Feb; 38(2):168-74. PubMed ID: 2066126
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.
    Dowden BR; Wilder AM; Hiatt SD; Normann RA; Brown NA; Clark GA
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):545-52. PubMed ID: 19696002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selectivity of multiple-contact nerve cuff electrodes: a simulation analysis.
    Choi AQ; Cavanaugh JK; Durand DM
    IEEE Trans Biomed Eng; 2001 Feb; 48(2):165-72. PubMed ID: 11296872
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode.
    Tyler DJ; Durand DM
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):294-303. PubMed ID: 12611367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Laryngeal elevation by selective stimulation of the hypoglossal nerve.
    Hadley AJ; Kolb I; Tyler DJ
    J Neural Eng; 2013 Aug; 10(4):046013. PubMed ID: 23838089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes.
    Raspopovic S; Capogrosso M; Badia J; Navarro X; Micera S
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):395-404. PubMed ID: 22481834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasound-guided needle positioning near the sciatic nerve to elicit compound muscle action potentials from the gastrocnemius muscle of the rat.
    Nijhuis TH; Smits ES; van Neck JW; Visser GH; Walbeehm ET; Blok JH; Hovius SE
    J Neurosci Methods; 2011 Jan; 194(2):283-6. PubMed ID: 21074561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flexible 3D carbon nanotubes cuff electrodes as a peripheral nerve interface.
    Tian P; Yi W; Chen C; Hu J; Qi J; Zhang B; Cheng MM
    Biomed Microdevices; 2018 Feb; 20(1):21. PubMed ID: 29460230
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-invasive measurement of the input-output properties of peripheral nerve stimulating electrodes.
    Grill WM; Mortimer JT
    J Neurosci Methods; 1996 Mar; 65(1):43-50. PubMed ID: 8815307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subfascicle stimulation selectivity with the flat interface nerve electrode.
    Leventhal DK; Durand DM
    Ann Biomed Eng; 2003 Jun; 31(6):643-52. PubMed ID: 12797613
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation.
    González-González MA; Kanneganti A; Joshi-Imre A; Hernandez-Reynoso AG; Bendale G; Modi R; Ecker M; Khurram A; Cogan SF; Voit WE; Romero-Ortega MI
    Sci Rep; 2018 Nov; 8(1):16390. PubMed ID: 30401906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.
    van Bolhuis AI; Holsheimer J; Savelberg HH
    J Neurosci Methods; 2001 May; 107(1-2):87-92. PubMed ID: 11389945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved nerve cuff electrode recordings with subthreshold anodic currents.
    Sahin M; Durand DM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1044-50. PubMed ID: 9691579
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Delaying discharge after the stimulus significantly decreases muscle activation thresholds with small impact on the selectivity: an in vivo study using TIME.
    Maciejasz P; Badia J; Boretius T; Andreu D; Stieglitz T; Jensen W; Navarro X; Guiraud D
    Med Biol Eng Comput; 2015 Apr; 53(4):371-9. PubMed ID: 25652078
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff.
    Schuettler M; Donaldson N; Seetohul V; Taylor J
    J Neural Eng; 2013 Jun; 10(3):036016. PubMed ID: 23640008
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neural interfacing with the peripheral nervous system.
    Durand DM; Yoo P; Lertmanorat Z
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():5329-32. PubMed ID: 17271545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human distal sciatic nerve fascicular anatomy: implications for ankle control using nerve-cuff electrodes.
    Gustafson KJ; Grinberg Y; Joseph S; Triolo RJ
    J Rehabil Res Dev; 2012; 49(2):309-21. PubMed ID: 22773531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.