These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31265750)
1. Emerging Bottom-Up Strategies for the Synthesis of Graphene Nanoribbons and Related Structures. Jolly A; Miao D; Daigle M; Morin JF Angew Chem Int Ed Engl; 2020 Mar; 59(12):4624-4633. PubMed ID: 31265750 [TBL] [Abstract][Full Text] [Related]
2. Heteroatom-Doped Nanographenes with Structural Precision. Wang XY; Yao X; Narita A; Müllen K Acc Chem Res; 2019 Sep; 52(9):2491-2505. PubMed ID: 31478641 [TBL] [Abstract][Full Text] [Related]
3. New advances in nanographene chemistry. Narita A; Wang XY; Feng X; Müllen K Chem Soc Rev; 2015 Sep; 44(18):6616-43. PubMed ID: 26186682 [TBL] [Abstract][Full Text] [Related]
4. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis. Zhou X; Yu G Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353 [TBL] [Abstract][Full Text] [Related]
5. Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations. Yang W; Lucotti A; Tommasini M; Chalifoux WA J Am Chem Soc; 2016 Jul; 138(29):9137-44. PubMed ID: 27352727 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Nanographenes, Starphenes, and Sterically Congested Polyarenes by Aryne Cyclotrimerization. Pozo I; Guitián E; Pérez D; Peña D Acc Chem Res; 2019 Sep; 52(9):2472-2481. PubMed ID: 31411855 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. Chen Z; Zhang W; Palma CA; Lodi Rizzini A; Liu B; Abbas A; Richter N; Martini L; Wang XY; Cavani N; Lu H; Mishra N; Coletti C; Berger R; Klappenberger F; Kläui M; Candini A; Affronte M; Zhou C; De Renzi V; Del Pennino U; Barth JV; Räder HJ; Narita A; Feng X; Müllen K J Am Chem Soc; 2016 Nov; 138(47):15488-15496. PubMed ID: 27933922 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of polybenzoquinolines as precursors for nitrogen-doped graphene nanoribbons. Dibble DJ; Park YS; Mazaheripour A; Umerani MJ; Ziller JW; Gorodetsky AA Angew Chem Int Ed Engl; 2015 May; 54(20):5883-7. PubMed ID: 25823492 [TBL] [Abstract][Full Text] [Related]
11. Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability. Huang Y; Mai Y; Beser U; Teyssandier J; Velpula G; van Gorp H; Straasø LA; Hansen MR; Rizzo D; Casiraghi C; Yang R; Zhang G; Wu D; Zhang F; Yan D; De Feyter S; Müllen K; Feng X J Am Chem Soc; 2016 Aug; 138(32):10136-9. PubMed ID: 27463961 [TBL] [Abstract][Full Text] [Related]
12. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications. Liu Z; Fu S; Liu X; Narita A; Samorì P; Bonn M; Wang HI Adv Sci (Weinh); 2022 Jul; 9(19):e2106055. PubMed ID: 35218329 [TBL] [Abstract][Full Text] [Related]
13. Bulk properties of solution-synthesized chevron-like graphene nanoribbons. Vo TH; Shekhirev M; Lipatov A; Korlacki RA; Sinitskii A Faraday Discuss; 2014; 173():105-13. PubMed ID: 25465679 [TBL] [Abstract][Full Text] [Related]
14. Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films. Ago H; Tanaka I; Ogawa Y; Yunus RM; Tsuji M; Hibino H ACS Nano; 2013 Dec; 7(12):10825-33. PubMed ID: 24206265 [TBL] [Abstract][Full Text] [Related]
15. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores. Shekhirev M; Zahl P; Sinitskii A ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655 [TBL] [Abstract][Full Text] [Related]
16. Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photo-Fenton Reaction. Luan X; Martín C; Zhang P; Li Q; Vacchi IA; Delogu LG; Mai Y; Bianco A Angew Chem Int Ed Engl; 2020 Oct; 59(42):18515-18521. PubMed ID: 32643814 [TBL] [Abstract][Full Text] [Related]
18. Helically Coiled Graphene Nanoribbons. Daigle M; Miao D; Lucotti A; Tommasini M; Morin JF Angew Chem Int Ed Engl; 2017 May; 56(22):6213-6217. PubMed ID: 28267293 [TBL] [Abstract][Full Text] [Related]
19. Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons. Ivanov I; Hu Y; Osella S; Beser U; Wang HI; Beljonne D; Narita A; Müllen K; Turchinovich D; Bonn M J Am Chem Soc; 2017 Jun; 139(23):7982-7988. PubMed ID: 28525278 [TBL] [Abstract][Full Text] [Related]
20. More π Electrons Make a Difference: Emergence of Many Radicals on Graphene Nanoribbons Studied by Ab Initio DMRG Theory. Mizukami W; Kurashige Y; Yanai T J Chem Theory Comput; 2013 Jan; 9(1):401-7. PubMed ID: 26589042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]