These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons. Wang XY; Urgel JI; Barin GB; Eimre K; Di Giovannantonio M; Milani A; Tommasini M; Pignedoli CA; Ruffieux P; Feng X; Fasel R; Müllen K; Narita A J Am Chem Soc; 2018 Jul; 140(29):9104-9107. PubMed ID: 29990420 [TBL] [Abstract][Full Text] [Related]
23. Living Suzuki-Miyaura Catalyst-Transfer Polymerization for Precision Synthesis of Length-Controlled Armchair Graphene Nanoribbons and Their Block Copolymers. Lee J; Ryu H; Park S; Cho M; Choi TL J Am Chem Soc; 2023 Jul; 145(28):15488-15495. PubMed ID: 37376993 [TBL] [Abstract][Full Text] [Related]
24. Efficient Bottom-Up Preparation of Graphene Nanoribbons by Mild Suzuki-Miyaura Polymerization of Simple Triaryl Monomers. Li G; Yoon KY; Zhong X; Zhu X; Dong G Chemistry; 2016 Jun; 22(27):9116-20. PubMed ID: 27159538 [TBL] [Abstract][Full Text] [Related]
25. A guide to the design of electronic properties of graphene nanoribbons. Yazyev OV Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074 [TBL] [Abstract][Full Text] [Related]
26. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. Narita A; Verzhbitskiy IA; Frederickx W; Mali KS; Jensen SA; Hansen MR; Bonn M; De Feyter S; Casiraghi C; Feng X; Müllen K ACS Nano; 2014 Nov; 8(11):11622-30. PubMed ID: 25338208 [TBL] [Abstract][Full Text] [Related]
27. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of N = 8 Armchair Graphene Nanoribbons from Four Distinct Polydiacetylenes. Jordan RS; Li YL; Lin CW; McCurdy RD; Lin JB; Brosmer JL; Marsh KL; Khan SI; Houk KN; Kaner RB; Rubin Y J Am Chem Soc; 2017 Nov; 139(44):15878-15890. PubMed ID: 29083160 [TBL] [Abstract][Full Text] [Related]
29. M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions. Fan X; Peng Z; Ye R; Zhou H; Guo X ACS Nano; 2015 Jul; 9(7):7407-18. PubMed ID: 26126147 [TBL] [Abstract][Full Text] [Related]
30. Bottom-Up Synthesis of Necklace-Like Graphene Nanoribbons. Schwab MG; Narita A; Osella S; Hu Y; Maghsoumi A; Mavrinsky A; Pisula W; Castiglioni C; Tommasini M; Beljonne D; Feng X; Müllen K Chem Asian J; 2015 Oct; 10(10):2134-8. PubMed ID: 26062724 [TBL] [Abstract][Full Text] [Related]
31. Bottom-Up Preparation of Twisted Graphene Nanoribbons by Cu-Catalyzed Deoxygenative Coupling. Gao Y; Hua X; Jiang W; Sun CL; Yuan C; Liu Z; Zhang HL; Shao X Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202210924. PubMed ID: 36098932 [TBL] [Abstract][Full Text] [Related]
32. Bottom-up Solution Synthesis of Graphene Nanoribbons with Precisely Engineered Nanopores. Niu W; Fu Y; Serra G; Liu K; Droste J; Lee Y; Ling Z; Xu F; Cojal González JD; Lucotti A; Rabe JP; Ryan Hansen M; Pisula W; Blom PWM; Palma CA; Tommasini M; Mai Y; Ma J; Feng X Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202305737. PubMed ID: 37335764 [TBL] [Abstract][Full Text] [Related]
33. Bottom-Up On-Surface Synthesis of Two-Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties. Kojima T; Nakae T; Xu Z; Saravanan C; Watanabe K; Nakamura Y; Sakaguchi H Chem Asian J; 2019 Dec; 14(23):4400-4407. PubMed ID: 31724299 [TBL] [Abstract][Full Text] [Related]
34. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Fan Q; Gottfried JM; Zhu J Acc Chem Res; 2015 Aug; 48(8):2484-94. PubMed ID: 26194462 [TBL] [Abstract][Full Text] [Related]
35. Toward Thiophene-Annulated Graphene Nanoribbons. Miao D; Daigle M; Lucotti A; Boismenu-Lavoie J; Tommasini M; Morin JF Angew Chem Int Ed Engl; 2018 Mar; 57(14):3588-3592. PubMed ID: 29406568 [TBL] [Abstract][Full Text] [Related]
37. Tuning of the Electronic Properties of Armchair Graphene Nanoribbons through Functionalization: Theoretical Study of (1)Δg O2 Border Addition. Ghigo G; Maranzana A; Tonachini G Chemphyschem; 2015 Oct; 16(14):3030-7. PubMed ID: 26401974 [TBL] [Abstract][Full Text] [Related]
38. Interfacial Self-Assembly of Atomically Precise Graphene Nanoribbons into Uniform Thin Films for Electronics Applications. Shekhirev M; Vo TH; Mehdi Pour M; Lipatov A; Munukutla S; Lyding JW; Sinitskii A ACS Appl Mater Interfaces; 2017 Jan; 9(1):693-700. PubMed ID: 27933763 [TBL] [Abstract][Full Text] [Related]
39. Ab initio characterization of graphene nanoribbons and their polymer precursors. Peköz R; Feng X; Donadio D J Phys Condens Matter; 2012 Mar; 24(10):104023. PubMed ID: 22353922 [TBL] [Abstract][Full Text] [Related]