These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31265862)

  • 21. Dissipation behavior, residue distribution and dietary risk assessment of field-incurred boscalid and pyraclostrobin in grape and grape field soil via MWCNTs-based QuEChERS using an RRLC-QqQ-MS/MS technique.
    Chen X; He S; Gao Y; Ma Y; Hu J; Liu X
    Food Chem; 2019 Feb; 274():291-297. PubMed ID: 30372941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissipation kinetics, pre-harvest residue limits, and dietary risk assessment of the systemic fungicide metalaxyl in Swiss chard grown under greenhouse conditions.
    Kabir MH; Abd El-Aty AM; Rahman MM; Chung HS; Lee HS; Jeong JH; Wang J; Shin S; Shin HC; Shim JH
    Regul Toxicol Pharmacol; 2018 Feb; 92():201-206. PubMed ID: 29233770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissipation behaviour, residue distribution and dietary risk assessment of tetraconazole and kresoxim-methyl in greenhouse strawberry via RRLC-QqQ-MS/MS technique.
    Chen X; Fan X; Ma Y; Hu J
    Ecotoxicol Environ Saf; 2018 Feb; 148():799-804. PubMed ID: 29195223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissipation Behavior, Residue, and Risk Assessment of Benziothiazolinone in Apples.
    Chai Y; Liu R; He W; Xu F; Chen Z; Li L; Li W; Yuan L
    Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33922495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissipation behavior, residue distribution, and dietary risk assessment of fluopimomide and dimethomorph in taro using HPLC-MS/MS.
    Yang L; Zhou X; Deng Y; Gong D; Luo H; Zhu P
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43956-43969. PubMed ID: 33846922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Residual behavior and risk assessment of prochloraz in bayberries and bayberry wine for the Chinese population.
    Zhao HY; Yang GL; Liu YL; Ye HP; Qi XJ; Wang Q
    Environ Monit Assess; 2019 Oct; 191(11):644. PubMed ID: 31606848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Residue analysis and dietary exposure risk assessment of tebufenozide in stem lettuce (Lactuca sativa L. var. angustana Irish).
    Lin H; Liu X; Ma Y; Pang K; Hu J
    Food Chem Toxicol; 2018 Oct; 120():64-70. PubMed ID: 29958988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical method for the determination of meptyldinocap as the 2,4-dinitro-octylphenol metabolite in cucumber and soil using LC-MS/MS and a study of the residues in a Chinese cucumber field ecosystem.
    Zhang Z; Shan W; Jian Q; Song W; Shen Y; Liu X
    Pest Manag Sci; 2014 Jan; 70(1):97-102. PubMed ID: 23505246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring and probabilistic risk assessment of chlorothalonil residues in vegetables from Shandong province (China).
    Zhang H; Nie Y; Zhang S; Wang WZ; Li H; Wang F; Lv X; Chen Z
    Regul Toxicol Pharmacol; 2016 Oct; 80():41-5. PubMed ID: 27240750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissipation of pyraclostrobin and its metabolite BF-500-3 in maize under field conditions.
    You X; Liu C; Liu F; Liu Y; Dong J
    Ecotoxicol Environ Saf; 2012 Jun; 80():252-7. PubMed ID: 22520453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissipation of fluazinam in citrus groves and a risk assessment for its dietary intake.
    Zhao J; Tan Z; Wen Y; Fan S; Liu C
    J Sci Food Agric; 2020 Mar; 100(5):2052-2056. PubMed ID: 31875964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A robust GC-MS/MS method for the determination of chlorothalonil in fruits and vegetables.
    Peruga A; Barreda M; Beltrán J; Hernández F
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(2):298-307. PubMed ID: 23116300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of direct competitive ELISA for residue analysis of fungicide chlorothalonil in vegetables.
    Okazaki F; Hirakawa Y; Yamaguchi-Murakami Y; Harada A; Watanabe E; Iwasa S; Narita H; Miyake S
    Shokuhin Eiseigaku Zasshi; 2014; 55(2):65-72. PubMed ID: 24990551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Residues, dissipation kinetics, and dietary intake risk assessment of two fungicides in grape and soil.
    Wang S; Zhang Q; Yu Y; Chen Y; Zeng S; Lu P; Hu D
    Regul Toxicol Pharmacol; 2018 Dec; 100():72-79. PubMed ID: 30359702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the pesticide chlorothalonil by HPLC and UV detection for occupational exposure assessment in greenhouse carnation culture.
    Jongen MJ; Engel R; Leenheers LH
    J Anal Toxicol; 1991; 15(1):30-4. PubMed ID: 2046339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Residual behavior and risk assessment of tridemorph in banana conditions.
    Wang S; Sun H; Liu Y
    Food Chem; 2018 Apr; 244():71-74. PubMed ID: 29120807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissipation of epoxiconazole in the paddy field under subtropical conditions of Taiwan.
    Lin HT; Wong SS; Li GC
    J Environ Sci Health B; 2001 Jul; 36(4):409-20. PubMed ID: 11495019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-step modified QuEChERS for determination of chlorothalonil in shallot (Allium ascalonicum) using GC-μECD and confirmation via mass spectrometry.
    Rahman MM; Park JH; Abd El-Aty AM; Choi JH; Bae HR; Yang A; Park KH; Shim JH
    Biomed Chromatogr; 2013 Apr; 27(4):416-21. PubMed ID: 22987571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissipation of sixteen pesticide residues from various applications of commercial formulations on strawberry and their risk assessment under greenhouse conditions.
    Song L; Zhong Z; Han Y; Zheng Q; Qin Y; Wu Q; He X; Pan C
    Ecotoxicol Environ Saf; 2020 Jan; 188():109842. PubMed ID: 31707322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residue Monitoring and Risk Assessment of Cyazofamid and Its Metabolite in Korean Cabbage Under Greenhouse Conditions.
    Sarker A; Lee SH; Kwak SY; Nam AJ; Kim HJ; Kim JE
    Bull Environ Contam Toxicol; 2020 Oct; 105(4):595-601. PubMed ID: 32862252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.