These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31266295)

  • 21. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles.
    Huang Y; Xie X; Li M; Xu M; Long J
    Opt Express; 2021 Feb; 29(3):4453-4463. PubMed ID: 33771023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy.
    Harilal SS; Yeak J; Brumfield BE; Phillips MC
    Opt Express; 2016 Aug; 24(16):17941-9. PubMed ID: 27505761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping and elemental fractionation of aerosols generated by laser-induced breakdown ablation.
    Chen Y; Bulatov V; Singer L; Stricker J; Schechter I
    Anal Bioanal Chem; 2005 Dec; 383(7-8):1090-7. PubMed ID: 16283266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of femtosecond laser-induced breakdown spectroscopy system as an offline coal analyzer.
    Sheta S; Hou Z; Wang Y; Wang Z
    Sci Rep; 2021 Aug; 11(1):15968. PubMed ID: 34354141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).
    Register J; Scaffidi J; Angel SM
    Appl Spectrosc; 2012 Aug; 66(8):869-74. PubMed ID: 22800813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical study on femtosecond laser optical breakdown threshold in water mediated by aluminum nanoparticle coated with silica.
    Lin Q; Ren N; Ren Y; Chen Y; Xin Z; Fan Y; Ren X; Li L
    Opt Express; 2018 Dec; 26(26):34200-34213. PubMed ID: 30650847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dielectric study on colloidal silica nanoparticle Layer-by-Layer assemblies on polycarbonate.
    Carosio F; Banet L; Freebody N; Reading M; Agnel S; Castellon J; Vaughan AS; Malucelli G
    J Colloid Interface Sci; 2013 Oct; 408():252-5. PubMed ID: 23932081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stoichiometry of laser ablated brass nanoparticles in water and air.
    Patel DN; Pandey PK; Thareja RK
    Appl Opt; 2013 Nov; 52(31):7592-601. PubMed ID: 24216663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-Mediated Excitation of Air Plasma and Silicon Plasma Expansion in Femtosecond Laser Pulses Ablation.
    Wang Q; Jiang L; Sun J; Pan C; Han W; Wang G; Wang F; Zhang K; Li M; Lu Y
    Research (Wash D C); 2018; 2018():5709748. PubMed ID: 31549032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement.
    Yang G; Lin Q; Ding Y; Tian D; Duan Y
    Sci Rep; 2015 Jan; 5():7625. PubMed ID: 25557721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Elemental Analysis of Alloys with Picosecond Dual-Pulse LA-LIBS under Low Sample Destruction].
    Wang FJ; Li RH; Wang ZX; Zeng XR; Cai ZG; Zhou JY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):236-40. PubMed ID: 30221504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy for the noninvasive analysis of transparent samples and gemstones.
    Koral C; Dell'Aglio M; Gaudiuso R; Alrifai R; Torelli M; De Giacomo A
    Talanta; 2018 May; 182():253-258. PubMed ID: 29501149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of femtosecond LIBS for spectrochemical microanalysis of aluminium alloys.
    Cravetchi IV; Taschuk MT; Tsui YY; Fedosejevs R
    Anal Bioanal Chem; 2006 May; 385(2):287-94. PubMed ID: 16437203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signal enhancement of laser-induced breakdown spectroscopy on non-flat samples by single beam splitting.
    Lei B; Wang J; Li J; Tang J; Wang Y; Zhao W; Duan Y
    Opt Express; 2019 Jul; 27(15):20541-20557. PubMed ID: 31510146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deposition of Cubic Copper Nanoparticles on Silicon Laser-Induced Periodic Surface Structures via Reactive Laser Ablation in Liquid.
    Broadhead EJ; Monroe A; Tibbetts KM
    Langmuir; 2021 Mar; 37(12):3740-3750. PubMed ID: 33740377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into Enhanced Repeatability of Femtosecond Laser-Induced Plasmas.
    Sheta S; Afgan MS; Jiacen L; Gu W; Hou Z; Wang Z
    ACS Omega; 2020 Dec; 5(47):30425-30435. PubMed ID: 33283090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene.
    Dikmelik Y; McEnnis C; Spicer JB
    Opt Express; 2008 Apr; 16(8):5332-7. PubMed ID: 18542635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of ultrafast GHz burst fs laser ablation.
    Park M; Gu Y; Mao X; Grigoropoulos CP; Zorba V
    Sci Adv; 2023 Mar; 9(12):eadf6397. PubMed ID: 36947628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples.
    De Giacomo A; Gaudiuso R; Koral C; Dell'Aglio M; De Pascale O
    Anal Chem; 2013 Nov; 85(21):10180-7. PubMed ID: 24090397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum.
    Zhang H; Zhang F; Du X; Dong G; Qiu J
    Opt Express; 2015 Jan; 23(2):1370-6. PubMed ID: 25835895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.