These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 31266305)
1. Biodegradation of Structurally Diverse Phthalate Esters by a Newly Identified Esterase with Catalytic Activity toward Di(2-ethylhexyl) Phthalate. Huang H; Zhang XY; Chen TL; Zhao YL; Xu DS; Bai YP J Agric Food Chem; 2019 Aug; 67(31):8548-8558. PubMed ID: 31266305 [TBL] [Abstract][Full Text] [Related]
2. Excellent Degradation Performance of a Versatile Phthalic Acid Esters-Degrading Bacterium and Catalytic Mechanism of Monoalkyl Phthalate Hydrolase. Fan S; Wang J; Yan Y; Wang J; Jia Y Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30231475 [TBL] [Abstract][Full Text] [Related]
3. Degradation of Di(2-Ethylhexyl) Phthalate by a Novel Gordonia alkanivorans Strain YC-RL2. Nahurira R; Ren L; Song J; Jia Y; Wang J; Fan S; Wang H; Yan Y Curr Microbiol; 2017 Mar; 74(3):309-319. PubMed ID: 28078431 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic hydrolysis of structurally diverse phthalic acid esters by porcine and bovine pancreatic cholesterol esterases. Saito T; Hong P; Tanabe R; Nagai K; Kato K Chemosphere; 2010 Dec; 81(11):1544-8. PubMed ID: 20822795 [TBL] [Abstract][Full Text] [Related]
5. Newly identified thermostable esterase from Sulfobacillus acidophilus: properties and performance in phthalate ester degradation. Zhang XY; Fan X; Qiu YJ; Li CY; Xing S; Zheng YT; Xu JH Appl Environ Microbiol; 2014 Nov; 80(22):6870-8. PubMed ID: 25149523 [TBL] [Abstract][Full Text] [Related]
7. Simultaneously degradation of various phthalate esters by Rhodococcus sp. AH-ZY2: Strain, omics and enzymatic study. Hou Z; Pan H; Gu M; Chen X; Ying T; Qiao P; Cao J; Wang H; Hu T; Zheng L; Zhong W J Hazard Mater; 2024 Aug; 474():134776. PubMed ID: 38852255 [TBL] [Abstract][Full Text] [Related]
8. Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12. Jin D; Kong X; Liu H; Wang X; Deng Y; Jia M; Yu X Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27347943 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a novel carboxylesterase from Bacillus velezensis SYBC H47 and its application in degradation of phthalate esters. Huang L; Meng D; Tian Q; Yang S; Deng H; Guan Z; Cai Y; Liao X J Biosci Bioeng; 2020 May; 129(5):588-594. PubMed ID: 31761671 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil. Yang T; Ren L; Jia Y; Fan S; Wang J; Wang J; Nahurira R; Wang H; Yan Y Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29751654 [TBL] [Abstract][Full Text] [Related]
11. Biodegradation of phthalic acid esters (PAEs) by Janthinobacterium sp. strain E1 under stress conditions. Zhang K; Zhou H; Ke J; Feng H; Lu C; Chen S; Liu A J Gen Appl Microbiol; 2024 Jul; 70(1):. PubMed ID: 38220211 [TBL] [Abstract][Full Text] [Related]
12. Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm. Chao WL; Cheng CY Chemosphere; 2007 Mar; 67(3):482-8. PubMed ID: 17092544 [TBL] [Abstract][Full Text] [Related]
13. A mono-2-ethylhexyl phthalate hydrolase from a Gordonia sp. that is able to dissimilate di-2-ethylhexyl phthalate. Nishioka T; Iwata M; Imaoka T; Mutoh M; Egashira Y; Nishiyama T; Shin T; Fujii T Appl Environ Microbiol; 2006 Apr; 72(4):2394-9. PubMed ID: 16597936 [TBL] [Abstract][Full Text] [Related]
14. Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog. Singh N; Dalal V; Mahto JK; Kumar P J Hazard Mater; 2017 Sep; 338():11-22. PubMed ID: 28531656 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge. Gavala HN; Alatriste-Mondragon F; Iranpour R; Ahring BK Chemosphere; 2003 Jul; 52(4):673-82. PubMed ID: 12738281 [TBL] [Abstract][Full Text] [Related]
16. Complete genome sequence of Gordonia sp. YC-JH1, a bacterium efficiently degrading a wide range of phthalic acid esters. Fan S; Wang J; Li K; Yang T; Jia Y; Zhao B; Yan Y J Biotechnol; 2018 Aug; 279():55-60. PubMed ID: 29763639 [TBL] [Abstract][Full Text] [Related]
17. Bioremediation of PAEs-contaminated saline soil: The application of a marine bacterial strain isolated from mangrove sediment. Ren L; Weng L; Chen D; Hu H; Jia Y; Zhou JL Mar Pollut Bull; 2023 Jul; 192():115071. PubMed ID: 37236097 [TBL] [Abstract][Full Text] [Related]
18. [Cloning, heterologous expression and characterization of a thermostable esterase from Bacillus sp. HJ14 for diethyl-phthalate degradation]. Peng Z; Ding J; Yang Y; Li J; Mu Y; Huang Z Wei Sheng Wu Xue Bao; 2016 Dec; 56(12):1932-43. PubMed ID: 29741858 [TBL] [Abstract][Full Text] [Related]
19. Degradation of dibutyl phthalate (DBP) by a bacterial consortium and characterization of two novel esterases capable of hydrolyzing PAEs sequentially. Lu M; Jiang W; Gao Q; Zhang M; Hong Q Ecotoxicol Environ Saf; 2020 Jun; 195():110517. PubMed ID: 32220793 [TBL] [Abstract][Full Text] [Related]
20. Synthetic bacterial consortia enhanced the degradation of mixed priority phthalate ester pollutants. Liu T; Ning L; Mei C; Li S; Zheng L; Qiao P; Wang H; Hu T; Zhong W Environ Res; 2023 Oct; 235():116666. PubMed ID: 37453507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]