BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31266424)

  • 1. Intraspecific sequence and gene expression variation contribute little to venom diversity in sidewinder rattlesnakes ( Crotalus cerastes).
    Rautsaw RM; Hofmann EP; Margres MJ; Holding ML; Strickland JL; Mason AJ; Rokyta DR; Parkinson CL
    Proc Biol Sci; 2019 Jul; 286(1906):20190810. PubMed ID: 31266424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics.
    Rokyta DR; Wray KP; Margres MJ
    BMC Genomics; 2013 Jun; 14():394. PubMed ID: 23758969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Venomics and Venom Gland Transcriptome Analysis of Juvenile and Adult Mexican Rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus Revealed miRNA-modulated Ontogenetic Shifts.
    Durban J; Sanz L; Trevisan-Silva D; Neri-Castro E; Alagón A; Calvete JJ
    J Proteome Res; 2017 Sep; 16(9):3370-3390. PubMed ID: 28731347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic integration in the feeding system of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Margres MJ; Wray KP; Seavy M; McGivern JJ; Sanader D; Rokyta DR
    Mol Ecol; 2015 Jul; 24(13):3405-20. PubMed ID: 25988233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (Crotalus cerastes) lineages reveal little differential expression despite individual variation.
    Hofmann EP; Rautsaw RM; Strickland JL; Holding ML; Hogan MP; Mason AJ; Rokyta DR; Parkinson CL
    Sci Rep; 2018 Oct; 8(1):15534. PubMed ID: 30341342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (Crotalus oreganus).
    Holding ML; Margres MJ; Rokyta DR; Gibbs HL
    J Evol Biol; 2018 Oct; 31(10):1513-1528. PubMed ID: 29959877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes.
    Rokyta DR; Wray KP; Lemmon AR; Lemmon EM; Caudle SB
    Toxicon; 2011 Apr; 57(5):657-71. PubMed ID: 21255598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications.
    Sunagar K; Undheim EA; Scheib H; Gren EC; Cochran C; Person CE; Koludarov I; Kelln W; Hayes WK; King GF; Antunes A; Fry BG
    J Proteomics; 2014 Mar; 99():68-83. PubMed ID: 24463169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus × viridis Hybrid Zone in Southwestern New Mexico.
    Zancolli G; Baker TG; Barlow A; Bradley RK; Calvete JJ; Carter KC; de Jager K; Owens JB; Price JF; Sanz L; Scholes-Higham A; Shier L; Wood L; Wüster CE; Wüster W
    Toxins (Basel); 2016 Jun; 8(6):. PubMed ID: 27322321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus).
    Strickland JL; Smith CF; Mason AJ; Schield DR; Borja M; Castañeda-Gaytán G; Spencer CL; Smith LL; Trápaga A; Bouzid NM; Campillo-García G; Flores-Villela OA; Antonio-Rangel D; Mackessy SP; Castoe TA; Rokyta DR; Parkinson CL
    Sci Rep; 2018 Dec; 8(1):17622. PubMed ID: 30514908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid evolution by positive selection and gene gain and loss: PLA(2) venom genes in closely related Sistrurus rattlesnakes with divergent diets.
    Gibbs HL; Rossiter W
    J Mol Evol; 2008 Feb; 66(2):151-66. PubMed ID: 18253686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America.
    Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM
    J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change.
    Douglas ME; Douglas MR; Schuett GW; Porras LW
    Mol Ecol; 2006 Oct; 15(11):3353-74. PubMed ID: 16968275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus).
    Rokyta DR; Wray KP; McGivern JJ; Margres MJ
    Toxicon; 2015 May; 98():34-48. PubMed ID: 25727380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Margres MJ; McGivern JJ; Wray KP; Seavy M; Calvin K; Rokyta DR
    J Proteomics; 2014 Jan; 96():145-58. PubMed ID: 24231107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Snake population venomics: proteomics-based analyses of individual variation reveals significant gene regulation effects on venom protein expression in Sistrurus rattlesnakes.
    Gibbs HL; Sanz L; Calvete JJ
    J Mol Evol; 2009 Feb; 68(2):113-25. PubMed ID: 19184165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deconstructing a complex molecular phenotype: population-level variation in individual venom proteins in Eastern Massasauga Rattlesnakes (Sistrurus c. catenatus).
    Lisle Gibbs H; Chiucchi JE
    J Mol Evol; 2011 Apr; 72(4):383-97. PubMed ID: 21394489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Deep Origin and Recent Loss of Venom Toxin Genes in Rattlesnakes.
    Dowell NL; Giorgianni MW; Kassner VA; Selegue JE; Sanchez EE; Carroll SB
    Curr Biol; 2016 Sep; 26(18):2434-2445. PubMed ID: 27641771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tipping the Scales: The Migration-Selection Balance Leans toward Selection in Snake Venoms.
    Margres MJ; Patton A; Wray KP; Hassinger ATB; Ward MJ; Lemmon EM; Lemmon AR; Rokyta DR
    Mol Biol Evol; 2019 Feb; 36(2):271-282. PubMed ID: 30395254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The best of both worlds? Rattlesnake hybrid zones generate complex combinations of divergent venom phenotypes that retain high toxicity.
    Smith CF; Nikolakis ZL; Perry BW; Schield DR; Meik JM; Saviola AJ; Castoe TA; Parker J; Mackessy SP
    Biochimie; 2023 Oct; 213():176-189. PubMed ID: 37451532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.