These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 31266443)
1. BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data. Park K; An J; Gim J; Seo M; Lee W; Park T; Won S BMC Genomics; 2019 Jul; 20(1):540. PubMed ID: 31266443 [TBL] [Abstract][Full Text] [Related]
2. Robust identification of differentially expressed genes from RNA-seq data. Shahjaman M; Manir Hossain Mollah M; Rezanur Rahman M; Islam SMS; Nurul Haque Mollah M Genomics; 2020 Mar; 112(2):2000-2010. PubMed ID: 31756426 [TBL] [Abstract][Full Text] [Related]
3. Accurate inference of isoforms from multiple sample RNA-Seq data. Tasnim M; Ma S; Yang EW; Jiang T; Li W BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S15. PubMed ID: 25708199 [TBL] [Abstract][Full Text] [Related]
4. What if we ignore the random effects when analyzing RNA-seq data in a multifactor experiment. Cui S; Ji T; Li J; Cheng J; Qiu J Stat Appl Genet Mol Biol; 2016 Apr; 15(2):87-105. PubMed ID: 26926865 [TBL] [Abstract][Full Text] [Related]
6. Inference of differentially expressed genes using generalized linear mixed models in a pairwise fashion. Terra Machado D; Bernardes Brustolini OJ; CĂ´rtes Martins Y; Grivet Mattoso Maia MA; Ribeiro de Vasconcelos AT PeerJ; 2023; 11():e15145. PubMed ID: 37033732 [TBL] [Abstract][Full Text] [Related]
7. RNA-seq analysis for detecting quantitative trait-associated genes. Seo M; Kim K; Yoon J; Jeong JY; Lee HJ; Cho S; Kim H Sci Rep; 2016 Apr; 6():24375. PubMed ID: 27071914 [TBL] [Abstract][Full Text] [Related]
8. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data. Baik B; Yoon S; Nam D PLoS One; 2020; 15(4):e0232271. PubMed ID: 32353015 [TBL] [Abstract][Full Text] [Related]
9. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Lund SP; Nettleton D; McCarthy DJ; Smyth GK Stat Appl Genet Mol Biol; 2012 Oct; 11(5):. PubMed ID: 23104842 [TBL] [Abstract][Full Text] [Related]
10. Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model. Li X; Wu D; Cooper NGF; Rai SN Stat Appl Genet Mol Biol; 2019 Jan; 18(1):. PubMed ID: 30667368 [TBL] [Abstract][Full Text] [Related]
11. It's DE-licious: A Recipe for Differential Expression Analyses of RNA-seq Experiments Using Quasi-Likelihood Methods in edgeR. Lun AT; Chen Y; Smyth GK Methods Mol Biol; 2016; 1418():391-416. PubMed ID: 27008025 [TBL] [Abstract][Full Text] [Related]
12. lncDIFF: a novel quasi-likelihood method for differential expression analysis of non-coding RNA. Li Q; Yu X; Chaudhary R; Slebos RJC; Chung CH; Wang X BMC Genomics; 2019 Jul; 20(1):539. PubMed ID: 31266446 [TBL] [Abstract][Full Text] [Related]
13. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of methods for differential expression analysis on multi-group RNA-seq count data. Tang M; Sun J; Shimizu K; Kadota K BMC Bioinformatics; 2015 Nov; 16():361. PubMed ID: 26538400 [TBL] [Abstract][Full Text] [Related]
15. Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2. Liu S; Wang Z; Zhu R; Wang F; Cheng Y; Liu Y J Vis Exp; 2021 Sep; (175):. PubMed ID: 34605806 [TBL] [Abstract][Full Text] [Related]
16. An evaluation of RNA-seq differential analysis methods. Li D; Zand MS; Dye TD; Goniewicz ML; Rahman I; Xie Z PLoS One; 2022; 17(9):e0264246. PubMed ID: 36112652 [TBL] [Abstract][Full Text] [Related]
17. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. Li X; Cooper NGF; O'Toole TE; Rouchka EC BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223 [TBL] [Abstract][Full Text] [Related]
18. ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences. Yang W; Rosenstiel PC; Schulenburg H BMC Genomics; 2016 Aug; 17():541. PubMed ID: 27488180 [TBL] [Abstract][Full Text] [Related]
19. Exaggerated false positives by popular differential expression methods when analyzing human population samples. Li Y; Ge X; Peng F; Li W; Li JJ Genome Biol; 2022 Mar; 23(1):79. PubMed ID: 35292087 [TBL] [Abstract][Full Text] [Related]
20. A two-step integrated approach to detect differentially expressed genes in RNA-Seq data. Al Mahi N; Begum M J Bioinform Comput Biol; 2016 Dec; 14(6):1650034. PubMed ID: 27774870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]