These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31266483)

  • 1. Application of dynamic optimisation for planning a haemodialysis process.
    Stecz W; Pytlak R; Rymarz A; Niemczyk S
    BMC Nephrol; 2019 Jul; 20(1):236. PubMed ID: 31266483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Pseudo-One Compartment Model of Phosphorus Kinetics During Hemodialysis: Further Supporting Evidence.
    Leypoldt JK; Agar BU; Cheung AK; Bernardo AA
    Artif Organs; 2017 Nov; 41(11):1043-1048. PubMed ID: 29148130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method of post-dialysis blood urea sampling: the 'stop dialysate flow' method.
    Geddes CC; Traynor J; Walbaum D; Fox JG; Mactier RA
    Nephrol Dial Transplant; 2000 Apr; 15(4):517-23. PubMed ID: 10727547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Modelling of phosphorus transfers during haemodialysis].
    Chazot G; Lemoine S; Juillard L
    Nephrol Ther; 2017 Apr; 13 Suppl 1():S89-S93. PubMed ID: 28577749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus kinetics during haemodialysis and haemofiltration.
    Pogglitsch H; Petek W; Ziak E; Sterz F; Holzer H
    Proc Eur Dial Transplant Assoc Eur Ren Assoc; 1985; 21():461-8. PubMed ID: 3991541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of high-efficiency and standard haemodialysis providing equal urea clearances by partial and total dialysate quantification.
    Mactier RA; Madi AM; Allam BF
    Nephrol Dial Transplant; 1997 Jun; 12(6):1182-6. PubMed ID: 9198048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual renal function and post dialysis urea rebound.
    Carofei O; Taratufolo A; Atti S; Fringuello F; Alaimo M
    EDTNA ERCA J; 1999; 25(2):7-8. PubMed ID: 10531872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinetic model of inorganic phosphorus mass balance in hemodialysis therapy.
    Gotch FA; Panlilio F; Sergeyeva O; Rosales L; Folden T; Kaysen G; Levin NW
    Blood Purif; 2003; 21(1):51-7. PubMed ID: 12566662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Appendix to dialysis centre guidelines: recommendations for the relationship between outpatient haemodialysis centres and reference hospitals. Opinions from the Outpatient Dialysis Group. Grupo de Trabajo de Hemodiálisis Extrahospitalaria.
    Berdud I; Arenas MD; Bernat A; Ramos R; Blanco A;
    Nefrologia; 2011; 31(6):664-9. PubMed ID: 22130281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Individual dialysis using computer-controlled prescription].
    Kovarik J; Graf H; Irschik H; Pohanka E; Stummvoll HK
    Wien Klin Wochenschr; 1985 Nov; 97(21):809-12. PubMed ID: 3904224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical analysis of a two-compartment model of urea kinetics.
    Smye SW; Will EJ
    Phys Med Biol; 1995 Dec; 40(12):2005-14. PubMed ID: 8719941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus metabolism in peritoneal dialysis- and haemodialysis-treated patients.
    Evenepoel P; Meijers BK; Bammens B; Viaene L; Claes K; Sprangers B; Naesens M; Hoekstra T; Schlieper G; Vanderschueren D; Kuypers D
    Nephrol Dial Transplant; 2016 Sep; 31(9):1508-14. PubMed ID: 26908778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A diffusion-adjusted regional blood flow model to predict solute kinetics during haemodialysis.
    Schneditz D; Platzer D; Daugirdas JT
    Nephrol Dial Transplant; 2009 Jul; 24(7):2218-24. PubMed ID: 19211646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific phosphorus mobilization clearance during nocturnal and short daily hemodialysis.
    Agar BU; Troidle L; Finkelstein FO; Kohn OF; Akonur A; Leypoldt JK
    Hemodial Int; 2012 Oct; 16(4):491-6. PubMed ID: 22574966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The variable target model: a paradigm shift in the incremental haemodialysis prescription.
    Casino FG; Basile C
    Nephrol Dial Transplant; 2017 Jan; 32(1):182-190. PubMed ID: 27742823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method to estimate phosphorus mobilization in hemodialysis using only predialytic and postdialytic blood samples.
    Agar BU; Akonur A; Cheung AK; Leypoldt JK
    Hemodial Int; 2011 Oct; 15 Suppl 1():S9-S14. PubMed ID: 22093606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of nutritional index on the association between phosphorus concentrations and mortality in haemodialysis patients: a cohort study from dialysis outcomes and practice pattern study in Japan.
    Fukuma S; Ikenoue T; Akizawa T; Fukuhara S
    BMJ Open; 2017 Aug; 7(8):e016682. PubMed ID: 28790041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modelling of haemodialysis in children.
    Evans JH; Smye SW; Brocklebank JT
    Pediatr Nephrol; 1992 Jul; 6(4):349-53. PubMed ID: 1498004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher Kt/V is needed for adequate dialysis if the treatment time is reduced. Insights from a blood flow distribution model.
    Haraldsson B
    Nephrol Dial Transplant; 1995 Oct; 10(10):1845-51. PubMed ID: 8592592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus removal with a variable chloride, CO2 acidified dialysate using an unmodified single pass system.
    Briefel GR; Anderson JE
    ASAIO J; 1995; 41(1):111-5. PubMed ID: 7727813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.