BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 31266769)

  • 21. Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody.
    Tvorogov D; Thompson-Peach CAL; Foßelteder J; Dottore M; Stomski F; Onnesha SA; Lim K; Moretti PAB; Pitson SM; Ross DM; Reinisch A; Thomas D; Lopez AF
    EMBO Rep; 2022 Apr; 23(4):e52904. PubMed ID: 35156745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of a molecular diagnostic assay for CALR exon 9 indels in myeloproliferative neoplasms: identification of coexisting JAK2 and CALR mutations and a novel 9 bp deletion in CALR.
    Murugesan G; Guenther-Johnson J; Mularo F; Cook JR; Daly TM
    Int J Lab Hematol; 2016 Jun; 38(3):284-97. PubMed ID: 27018326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CALR gene mutational profile in myeloproliferative neoplasms with non-mutated JAK2 in Moroccan patients: A case series and germline in-frame deletion.
    Smaili W; Doubaj Y; Laarabi FZ; Lyahyai J; Kerbout M; Mikdame M; Sefiani A
    Curr Res Transl Med; 2017; 65(1):15-19. PubMed ID: 28340692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Type I but Not Type II Calreticulin Mutations Activate the IRE1α/XBP1 Pathway of the Unfolded Protein Response to Drive Myeloproliferative Neoplasms.
    Ibarra J; Elbanna YA; Kurylowicz K; Ciboddo M; Greenbaum HS; Arellano NS; Rodriguez D; Evers M; Bock-Hughes A; Liu C; Smith Q; Lutze J; Baumeister J; Kalmer M; Olschok K; Nicholson B; Silva D; Maxwell L; Dowgielewicz J; Rumi E; Pietra D; Casetti IC; Catricala S; Koschmieder S; Gurbuxani S; Schneider RK; Oakes SA; Elf SE
    Blood Cancer Discov; 2022 Jul; 3(4):298-315. PubMed ID: 35405004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Application of genetic data to clinical practice of MPN].
    Edahiro Y
    Rinsho Ketsueki; 2015 Aug; 56(8):949-55. PubMed ID: 26345552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Megakaryocytes, erythropoietic and granulopoietic cells express CAL2 antibody in myeloproliferative neoplasms carrying CALR gene mutations.
    Ali H; Puccio I; Akarca AU; Bob R; Pomplun S; Keong Wong W; Gupta R; Sekhar M; Lambert J; Al-Masri H; Stein H; Marafioti T
    Int J Exp Pathol; 2021 Feb; 102(1):45-50. PubMed ID: 32929772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TERT rs2736100 A>C SNP and JAK2 46/1 haplotype significantly contribute to the occurrence of JAK2 V617F and CALR mutated myeloproliferative neoplasms - a multicentric study on 529 patients.
    Trifa AP; Bănescu C; Tevet M; Bojan A; Dima D; Urian L; Török-Vistai T; Popov VM; Zdrenghea M; Petrov L; Vasilache A; Murat M; Georgescu D; Popescu M; Pătrinoiu O; Balea M; Costache R; Coleș E; Șaguna C; Berbec N; Vlădăreanu AM; Mihăilă RG; Bumbea H; Cucuianu A; Popp RA
    Br J Haematol; 2016 Jul; 174(2):218-26. PubMed ID: 27061303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Contemporary Approach to CALR-Positive Myeloproliferative Neoplasms.
    Belčič Mikič T; Pajič T; Zver S; Sever M
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33806036
    [No Abstract]   [Full Text] [Related]  

  • 29. Mutation-Driven S100A8 Overexpression Confers Aberrant Phenotypes in Type 1
    Wang YH; Chen YJ; Lai YH; Wang MC; Chen YY; Wu YY; Yang YR; Tsou HY; Li CP; Hsu CC; Huang CE; Chen CC
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid, low cost and sensitive detection of Calreticulin mutations by a PCR based amplicon length differentiation assay for diagnosis of myeloproliferative neoplasms.
    Trung NT; Quyen DT; Hoan NX; Giang DP; Trang TTH; Velavan TP; Bang MH; Song LH
    BMC Med Genet; 2019 Jun; 20(1):115. PubMed ID: 31248375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patients With Myeloproliferative Neoplasms Harbor High Frequencies of CD8 T Cell-Platelet Aggregates Associated With T Cell Suppression.
    Carnaz Simões AM; Holmström MO; Aehnlich P; Rahbech A; Radziwon-Balicka A; Zamora C; Wirenfeldt Klausen T; Skov V; Kjær L; Ellervik C; Fassi DE; Vidal S; Hasselbalch HC; Andersen MH; Thor Straten P
    Front Immunol; 2022; 13():866610. PubMed ID: 35603202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis.
    Merlinsky TR; Levine RL; Pronier E
    Clin Cancer Res; 2019 May; 25(10):2956-2962. PubMed ID: 30655313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN.
    Elf S; Abdelfattah NS; Baral AJ; Beeson D; Rivera JF; Ko A; Florescu N; Birrane G; Chen E; Mullally A
    Blood; 2018 Feb; 131(7):782-786. PubMed ID: 29288169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CALR mutations in a cohort of JAK2 V617F negative patients with suspected myeloproliferative neoplasms.
    Belcic Mikic T; Pajic T; Sever M
    Sci Rep; 2019 Dec; 9(1):19838. PubMed ID: 31882869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutational landscape of the transcriptome offers putative targets for immunotherapy of myeloproliferative neoplasms.
    Schischlik F; Jäger R; Rosebrock F; Hug E; Schuster M; Holly R; Fuchs E; Milosevic Feenstra JD; Bogner E; Gisslinger B; Schalling M; Rumi E; Pietra D; Fischer G; Faé I; Vulliard L; Menche J; Haferlach T; Meggendorfer M; Stengel A; Bock C; Cazzola M; Gisslinger H; Kralovics R
    Blood; 2019 Jul; 134(2):199-210. PubMed ID: 31064751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting the CALR interactome in myeloproliferative neoplasms.
    Pronier E; Cifani P; Merlinsky TR; Berman KB; Somasundara AVH; Rampal RK; LaCava J; Wei KE; Pastore F; Maag JL; Park J; Koche R; Kentsis A; Levine RL
    JCI Insight; 2018 Nov; 3(22):. PubMed ID: 30429377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Development of myeloproliferative neoplasms by mutant calreticulin: underlying mechanisms].
    Araki M
    Rinsho Ketsueki; 2018; 59(8):1072-1077. PubMed ID: 30185708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype?
    Ahmed RZ; Rashid M; Ahmed N; Nadeem M; Shamsi TS
    Asian Pac J Cancer Prev; 2016; 17(3):923-6. PubMed ID: 27039813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants.
    Chachoua I; Pecquet C; El-Khoury M; Nivarthi H; Albu RI; Marty C; Gryshkova V; Defour JP; Vertenoeil G; Ngo A; Koay A; Raslova H; Courtoy PJ; Choong ML; Plo I; Vainchenker W; Kralovics R; Constantinescu SN
    Blood; 2016 Mar; 127(10):1325-35. PubMed ID: 26668133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hematopoietic expression of a chimeric murine-human CALR oncoprotein allows the assessment of anti-CALR antibody immunotherapies in vivo.
    Achyutuni S; Nivarthi H; Majoros A; Hug E; Schueller C; Jia R; Varga C; Schuster M; Senekowitsch M; Tsiantoulas D; Kavirayani A; Binder CJ; Bock C; Zagrijtschuk O; Kralovics R
    Am J Hematol; 2021 Jun; 96(6):698-707. PubMed ID: 33761144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.