These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 31266948)
1. Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology. Barrington C; Georgopoulou D; Pezic D; Varsally W; Herrero J; Hadjur S Nat Commun; 2019 Jul; 10(1):2908. PubMed ID: 31266948 [TBL] [Abstract][Full Text] [Related]
2. Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells. Cuadrado A; Giménez-Llorente D; Kojic A; Rodríguez-Corsino M; Cuartero Y; Martín-Serrano G; Gómez-López G; Marti-Renom MA; Losada A Cell Rep; 2019 Jun; 27(12):3500-3510.e4. PubMed ID: 31216471 [TBL] [Abstract][Full Text] [Related]
3. Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?: Alternating Chromatin States Provide a Basis for Domain Architecture in Drosophila. Matthews NE; White R Bioessays; 2019 Sep; 41(9):e1900048. PubMed ID: 31264253 [TBL] [Abstract][Full Text] [Related]
4. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver. Matthews BJ; Waxman DJ Epigenetics Chromatin; 2020 Jul; 13(1):30. PubMed ID: 32680543 [TBL] [Abstract][Full Text] [Related]
5. A tour of 3D genome with a focus on CTCF. Wang DC; Wang W; Zhang L; Wang X Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214 [TBL] [Abstract][Full Text] [Related]
6. Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding. Kadota S; Ou J; Shi Y; Lee JT; Sun J; Yildirim E Nat Commun; 2020 May; 11(1):2606. PubMed ID: 32451376 [TBL] [Abstract][Full Text] [Related]
7. Permeable TAD boundaries and their impact on genome-associated functions. Chang LH; Noordermeer D Bioessays; 2024 Oct; 46(10):e2400137. PubMed ID: 39093600 [TBL] [Abstract][Full Text] [Related]
8. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ Front Immunol; 2018; 9():425. PubMed ID: 29593713 [TBL] [Abstract][Full Text] [Related]
9. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression. Vos ESM; Valdes-Quezada C; Huang Y; Allahyar A; Verstegen MJAM; Felder AK; van der Vegt F; Uijttewaal ECH; Krijger PHL; de Laat W Mol Cell; 2021 Aug; 81(15):3082-3095.e6. PubMed ID: 34197738 [TBL] [Abstract][Full Text] [Related]
10. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Luo H; Zhu G; Eshelman MA; Fung TK; Lai Q; Wang F; Zeisig BB; Lesperance J; Ma X; Chen S; Cesari N; Cogle C; Chen B; Xu B; Yang FC; So CWE; Qiu Y; Xu M; Huang S Mol Cell; 2022 Feb; 82(4):833-851.e11. PubMed ID: 35180428 [TBL] [Abstract][Full Text] [Related]
11. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Hanssen LLP; Kassouf MT; Oudelaar AM; Biggs D; Preece C; Downes DJ; Gosden M; Sharpe JA; Sloane-Stanley JA; Hughes JR; Davies B; Higgs DR Nat Cell Biol; 2017 Aug; 19(8):952-961. PubMed ID: 28737770 [TBL] [Abstract][Full Text] [Related]
12. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver. Matthews BJ; Waxman DJ Elife; 2018 May; 7():. PubMed ID: 29757144 [TBL] [Abstract][Full Text] [Related]
14. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites. Kim J; Kang J; Kim YW; Kim A FASEB J; 2021 Jun; 35(6):e21669. PubMed ID: 34033138 [TBL] [Abstract][Full Text] [Related]
15. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910 [TBL] [Abstract][Full Text] [Related]
16. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Rinzema NJ; Sofiadis K; Tjalsma SJD; Verstegen MJAM; Oz Y; Valdes-Quezada C; Felder AK; Filipovska T; van der Elst S; de Andrade Dos Ramos Z; Han R; Krijger PHL; de Laat W Nat Struct Mol Biol; 2022 Jun; 29(6):563-574. PubMed ID: 35710842 [TBL] [Abstract][Full Text] [Related]
17. Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer-promoter interaction in the β-globin locus. Kang J; Kim YW; Park S; Kang Y; Kim A FASEB J; 2021 Aug; 35(8):e21768. PubMed ID: 34245617 [TBL] [Abstract][Full Text] [Related]
18. Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Despang A; Schöpflin R; Franke M; Ali S; Jerković I; Paliou C; Chan WL; Timmermann B; Wittler L; Vingron M; Mundlos S; Ibrahim DM Nat Genet; 2019 Aug; 51(8):1263-1271. PubMed ID: 31358994 [TBL] [Abstract][Full Text] [Related]
19. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Davidson IF; Barth R; Zaczek M; van der Torre J; Tang W; Nagasaka K; Janissen R; Kerssemakers J; Wutz G; Dekker C; Peters JM Nature; 2023 Apr; 616(7958):822-827. PubMed ID: 37076620 [TBL] [Abstract][Full Text] [Related]
20. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. Pugacheva EM; Kubo N; Loukinov D; Tajmul M; Kang S; Kovalchuk AL; Strunnikov AV; Zentner GE; Ren B; Lobanenkov VV Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2020-2031. PubMed ID: 31937660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]