BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31266959)

  • 1. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis.
    Lee JJ; Lee SK; Song N; Nathan TO; Swarts BM; Eum SY; Ehrt S; Cho SN; Eoh H
    Nat Commun; 2019 Jul; 10(1):2928. PubMed ID: 31266959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting
    Kalera K; Liu R; Lim J; Pathirage R; Swanson DH; Johnson UG; Stothard AI; Lee JJ; Poston AW; Woodruff PJ; Ronning DR; Eoh H; Swarts BM
    ACS Infect Dis; 2024 Apr; 10(4):1391-1404. PubMed ID: 38485491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in
    Eoh H; Liu R; Lim J; Lee JJ; Sell P
    Front Cell Infect Microbiol; 2022; 12():958240. PubMed ID: 36072228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trehalose Recycling Promotes Energy-Efficient Biosynthesis of the Mycobacterial Cell Envelope.
    Pohane AA; Carr CR; Garhyan J; Swarts BM; Siegrist MS
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Biosafety Level 2-Approved, Multidrug-Resistant Strains of Mycobacterium tuberculosis through Nutrient Auxotrophy.
    Vilchèze C; Copeland J; Keiser TL; Weisbrod T; Washington J; Jain P; Malek A; Weinrick B; Jacobs WR
    mBio; 2018 May; 9(3):. PubMed ID: 29844114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis.
    Kalscheuer R; Weinrick B; Veeraraghavan U; Besra GS; Jacobs WR
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21761-6. PubMed ID: 21118978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of bedaquiline and capreomycin on the gene expression patterns of multidrug-resistant Mycobacterium tuberculosis H37Rv strain and understanding the molecular mechanism of antibiotic resistance.
    Miryala SK; Anbarasu A; Ramaiah S
    J Cell Biochem; 2019 Sep; 120(9):14499-14509. PubMed ID: 30989745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diphenylether-Modified 1,2-Diamines with Improved Drug Properties for Development against Mycobacterium tuberculosis.
    Foss MH; Pou S; Davidson PM; Dunaj JL; Winter RW; Pou S; Licon MH; Doh JK; Li Y; Kelly JX; Dodean RA; Koop DR; Riscoe MK; Purdy GE
    ACS Infect Dis; 2016 Jul; 2(7):500-8. PubMed ID: 27626102
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Namugenyi SB; Aagesen AM; Elliott SR; Tischler AD
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Mycobacterium tuberculosis Uganda II family and resistance to first-line anti-tuberculosis drugs in Uganda.
    Ezati N; Lukoye D; Wampande EM; Musisi K; Kasule GW; Cobelens FG; Kateete DP; Joloba ML
    BMC Infect Dis; 2014 Dec; 14():703. PubMed ID: 25523472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach.
    Uddin R; Siddiqui QN; Azam SS; Saima B; Wadood A
    Eur J Pharm Sci; 2018 Mar; 114():13-23. PubMed ID: 29174549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance.
    Singh R; Barry CE; Boshoff HI
    J Bacteriol; 2010 Mar; 192(5):1279-91. PubMed ID: 20061486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Landscape of a Drug-Tolerant Persister Subpopulation of
    Sharma R; Lunge A; Mangla N; Agarwal N
    J Proteome Res; 2021 Sep; 20(9):4415-4426. PubMed ID: 34343006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of structural fitness and multifunctional aspects of mycobacterial RND family transporters.
    Sandhu P; Akhter Y
    Arch Microbiol; 2018 Jan; 200(1):19-31. PubMed ID: 28951954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis.
    Trivedi A; Mavi PS; Bhatt D; Kumar A
    Nat Commun; 2016 Apr; 7():11392. PubMed ID: 27109928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deregulation of Genes Associated with Alternate Drug Resistance Mechanisms in Mycobacterium tuberculosis.
    Sriraman K; Nilgiriwala K; Saranath D; Chatterjee A; Mistry N
    Curr Microbiol; 2018 Apr; 75(4):394-400. PubMed ID: 29143876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High level association of mutation in KatG315 with MDR and XDR clinical isolates of Mycobacterium tuberculosis in Belarus.
    Setareh M; Titov LP; Surkova LK
    Acta Microbiol Immunol Hung; 2009 Dec; 56(4):313-25. PubMed ID: 20038484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis.
    Murphy HN; Stewart GR; Mischenko VV; Apt AS; Harris R; McAlister MS; Driscoll PC; Young DB; Robertson BD
    J Biol Chem; 2005 Apr; 280(15):14524-9. PubMed ID: 15703182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.