These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31266977)

  • 1. High cloud coverage over melted areas dominates the impact of clouds on the albedo feedback in the Arctic.
    He M; Hu Y; Chen N; Wang D; Huang J; Stamnes K
    Sci Rep; 2019 Jul; 9(1):9529. PubMed ID: 31266977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observational determination of albedo decrease caused by vanishing Arctic sea ice.
    Pistone K; Eisenman I; Ramanathan V
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3322-6. PubMed ID: 24550469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal Variations of Arctic Low-Level Clouds and Its Linkage to Sea Ice Seasonal Variations.
    Yu Y; Taylor PC; Cai M
    J Geophys Res Atmos; 2019 Nov; 124(22):12206-12226. PubMed ID: 32025450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds.
    Zamora LM; Kahn RA; Eckhardt S; McComiskey A; Sawamura P; Moore R; Stohl A
    Atmos Chem Phys; 2017 Jun; 17(12):7311-7332. PubMed ID: 32849860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of sea ice in the Arctic.
    Perovich DK; Richter-Menge JA
    Ann Rev Mar Sci; 2009; 1():417-41. PubMed ID: 21141043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.
    Holland MM; Landrum L
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2045):. PubMed ID: 26032318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level.
    Taylor PC; Kato S; Xu KM; Cai M
    J Geophys Res Atmos; 2015 Dec; 120(24):12656-12678. PubMed ID: 27818851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements.
    Cho HM; Yang P; Kattawar GW; Nasiri SL; Hu Y; Minnis P; Trepte C; Winker D
    Opt Express; 2008 Mar; 16(6):3931-48. PubMed ID: 18542490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Satellite Observations to Evaluate Model Microphysical Representation of Arctic Mixed-Phase Clouds.
    Shaw J; McGraw Z; Bruno O; Storelvmo T; Hofer S
    Geophys Res Lett; 2022 Feb; 49(3):e2021GL096191. PubMed ID: 35845251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s.
    Zhang R; Wang H; Fu Q; Rasch PJ; Wang X
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):23947-23953. PubMed ID: 31712425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.
    Hofer S; Tedstone AJ; Fettweis X; Bamber JL
    Sci Adv; 2017 Jun; 3(6):e1700584. PubMed ID: 28782014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global and Arctic climate sensitivity enhanced by changes in North Pacific heat flux.
    Praetorius S; Rugenstein M; Persad G; Caldeira K
    Nat Commun; 2018 Aug; 9(1):3124. PubMed ID: 30087327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annual cycle observations of aerosols capable of ice formation in central Arctic clouds.
    Creamean JM; Barry K; Hill TCJ; Hume C; DeMott PJ; Shupe MD; Dahlke S; Willmes S; Schmale J; Beck I; Hoppe CJM; Fong A; Chamberlain E; Bowman J; Scharien R; Persson O
    Nat Commun; 2022 Jun; 13(1):3537. PubMed ID: 35725737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.
    Kravitz B; Wang H; Rasch PJ; Morrison H; Solomon AB
    Philos Trans A Math Phys Eng Sci; 2014 Dec; 372(2031):. PubMed ID: 25404677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High interannual variability of sea ice thickness in the Arctic region.
    Laxon S; Peacock N; Smith D
    Nature; 2003 Oct; 425(6961):947-50. PubMed ID: 14586466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based and drifting station data.
    Klaus D; Dethlo K; Dorn W; Rinke A; Wu DL
    Geophys Res Lett; 2016 May; 43(10):5450-5459. PubMed ID: 32753770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical structure of recent Arctic warming.
    Graversen RG; Mauritsen T; Tjernström M; Källén E; Svensson G
    Nature; 2008 Jan; 451(7174):53-6. PubMed ID: 18172495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear threshold behavior during the loss of Arctic sea ice.
    Eisenman I; Wettlaufer JS
    Proc Natl Acad Sci U S A; 2009 Jan; 106(1):28-32. PubMed ID: 19109440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.
    Kashiwase H; Ohshima KI; Nihashi S; Eicken H
    Sci Rep; 2017 Aug; 7(1):8170. PubMed ID: 28811530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds.
    Popović P; Cael BB; Silber M; Abbot DS
    Phys Rev Lett; 2018 Apr; 120(14):148701. PubMed ID: 29694130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.