BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31267120)

  • 1. Calcium ion implicitly modulates the adsorption ability of ion-dependent type II antifreeze proteins on an ice/water interface: a structural insight.
    Chakraborty S; Jana B
    Metallomics; 2019 Aug; 11(8):1387-1400. PubMed ID: 31267120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and evolutionary origin of Ca(2+)-dependent herring type II antifreeze protein.
    Liu Y; Li Z; Lin Q; Kosinski J; Seetharaman J; Bujnicki JM; Sivaraman J; Hew CL
    PLoS One; 2007 Jun; 2(6):e548. PubMed ID: 17579720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-Binding Generates the Semi-Clathrate Waters on a Type II Antifreeze Protein to Adsorb onto an Ice Crystal Surface.
    Arai T; Nishimiya Y; Ohyama Y; Kondo H; Tsuda S
    Biomolecules; 2019 Apr; 9(5):. PubMed ID: 31035615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics.
    Cheng Y; Yang Z; Tan H; Liu R; Chen G; Jia Z
    Biophys J; 2002 Oct; 83(4):2202-10. PubMed ID: 12324437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant.
    Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN
    Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein.
    Chakraborty S; Jana B
    J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.
    Sun T; Gauthier SY; Campbell RL; Davies PL
    J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water.
    Verreault D; Alamdari S; Roeters SJ; Pandey R; Pfaendtner J; Weidner T
    Phys Chem Chem Phys; 2018 Oct; 20(42):26926-26933. PubMed ID: 30260363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Ca2+-coordinating residues of herring antifreeze protein in antifreeze activity.
    Li Z; Lin Q; Yang DS; Ewart KV; Hew CL
    Biochemistry; 2004 Nov; 43(46):14547-54. PubMed ID: 15544325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus.
    Nishimiya Y; Kondo H; Takamichi M; Sugimoto H; Suzuki M; Miura A; Tsuda S
    J Mol Biol; 2008 Oct; 382(3):734-46. PubMed ID: 18674542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Insight into the Adsorption of Spruce Budworm Antifreeze Protein to an Ice Surface: A Clathrate-Mediated Recognition Mechanism.
    Chakraborty S; Jana B
    Langmuir; 2017 Jul; 33(28):7202-7214. PubMed ID: 28650167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm.
    Yang DS; Hon WC; Bubanko S; Xue Y; Seetharaman J; Hew CL; Sicheri F
    Biophys J; 1998 May; 74(5):2142-51. PubMed ID: 9591641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins.
    Pal P; Chakraborty S; Jana B
    J Phys Chem B; 2020 Jun; 124(23):4686-4696. PubMed ID: 32425044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein.
    Mahatabuddin S; Fukami D; Arai T; Nishimiya Y; Shimizu R; Shibazaki C; Kondo H; Adachi M; Tsuda S
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5456-5461. PubMed ID: 29735675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergy between Antifreeze Proteins Is Driven by Complementary Ice-Binding.
    Berger T; Meister K; DeVries AL; Eves R; Davies PL; Drori R
    J Am Chem Soc; 2019 Dec; 141(48):19144-19150. PubMed ID: 31710222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.