BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 31267232)

  • 1. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient
    Kaur M; Jayaraman G
    Metab Eng Commun; 2016 Dec; 3():15-23. PubMed ID: 29468110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524.
    Trip H; Mulder NL; Lolkema JS
    J Biol Chem; 2012 Mar; 287(14):11195-204. PubMed ID: 22351775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera.
    Vázquez JA; Montemayor MI; Fraguas J; Murado MA
    Microb Cell Fact; 2010 Jun; 9():46. PubMed ID: 20546615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Isotope Fractionation during Catabolism and Anabolism in Acetogenic Bacteria Growing on Different Substrates.
    Freude C; Blaser M
    Appl Environ Microbiol; 2016 May; 82(9):2728-2737. PubMed ID: 26921422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Hyaluronic Acid by Streptococcus zooepidemicus on Protein Substrates Obtained from Scyliorhinus canicula Discards.
    Vázquez JA; Pastrana L; Piñeiro C; Teixeira JA; Pérez-Martín RI; Amado IR
    Mar Drugs; 2015 Oct; 13(10):6537-49. PubMed ID: 26512678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome constraints reveal targets for improving microbial fitness in nutrient-rich environments.
    Chen Y; van Pelt-KleinJan E; van Olst B; Douwenga S; Boeren S; Bachmann H; Molenaar D; Nielsen J; Teusink B
    Mol Syst Biol; 2021 Apr; 17(4):e10093. PubMed ID: 33821549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic profiling of adding cobalt chloride to improve dendrobine-type total alkaloid production.
    Qian X; Qin Y; Sarasiya S; Chen J
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):26. PubMed ID: 38170314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotubes catalyzed UV-trigger production of hyaluronic acid from
    Attia YA; Al Nazawi AM; Elsayed H; Sadik MW
    Saudi J Biol Sci; 2021 Jan; 28(1):484-491. PubMed ID: 33424331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium acetate increases the productivity of HEK293 cells expressing the ECD-Her1 protein in batch cultures: experimental results and metabolic flux analysis.
    Pérez-Fernández BA; Calzadilla L; Enrico Bena C; Del Giudice M; Bosia C; Boggiano T; Mulet R
    Front Bioeng Biotechnol; 2024; 12():1335898. PubMed ID: 38659646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar Shock: Probing
    Davis RW; Muse CG; Eggleston H; Hill M; Panizzi P
    Front Microbiol; 2022; 13():864014. PubMed ID: 35722335
    [No Abstract]   [Full Text] [Related]  

  • 11. Production of R- and S-1,2-propanediol in engineered Lactococcus lactis.
    Sato R; Ikeda M; Tanaka T; Ohara H; Aso Y
    AMB Express; 2021 Aug; 11(1):117. PubMed ID: 34398341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the role of dissolved oxygen and N-acetyl glucosamine in governing higher molecular weight hyaluronic acid synthesis in Streptococcus zooepidemicus cell factory.
    Mohan N; Tadi SRR; Pavan SS; Sivaprakasam S
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3349-3365. PubMed ID: 32078020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures.
    Jeeva P; Shanmuga Doss S; Sundaram V; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4363-4375. PubMed ID: 30968163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis.
    Hmar RV; Prasad SB; Jayaraman G; Ramachandran KB
    Biotechnol J; 2014 Dec; 9(12):1554-64. PubMed ID: 25044639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis.
    Badle SS; Jayaraman G; Ramachandran KB
    Bioresour Technol; 2014 Jul; 163():222-7. PubMed ID: 24814248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective bacterial and fungal sources of hyaluronic acid: A review.
    Shikina EV; Kovalevsky RA; Shirkovskaya AI; Toukach PV
    Comput Struct Biotechnol J; 2022; 20():6214-6236. PubMed ID: 36420162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial production of hyaluronic acid: current state, challenges, and perspectives.
    Liu L; Liu Y; Li J; Du G; Chen J
    Microb Cell Fact; 2011 Nov; 10():99. PubMed ID: 22088095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of acetyl-CoA by acetate co-utilization in recombinant Lactococcus lactis cultures enables the production of high molecular weight hyaluronic acid.
    Puvendran K; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):6989-7001. PubMed ID: 31267232
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.