BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 31267334)

  • 1. Normative ranges of nasal airflow variables in healthy adults.
    Borojeni AAT; Garcia GJM; Moghaddam MG; Frank-Ito DO; Kimbell JS; Laud PW; Koenig LJ; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):87-98. PubMed ID: 31267334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction.
    Sullivan CD; Garcia GJ; Frank-Ito DO; Kimbell JS; Rhee JS
    Otolaryngol Head Neck Surg; 2014 Jan; 150(1):139-47. PubMed ID: 24154749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area.
    Garcia GJM; Hariri BM; Patel RG; Rhee JS
    J Biomech; 2016 Jun; 49(9):1670-1678. PubMed ID: 27083059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy.
    A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction.
    Frank-Ito DO; Kimbell JS; Borojeni AAT; Garcia GJM; Rhee JS
    Clin Biomech (Bristol, Avon); 2019 Jan; 61():172-180. PubMed ID: 30594764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional peak mucosal cooling predicts the perception of nasal patency.
    Zhao K; Jiang J; Blacker K; Lyman B; Dalton P; Cowart BJ; Pribitkin EA
    Laryngoscope; 2014 Mar; 124(3):589-95. PubMed ID: 23775640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Mucosal Decongestion on Nasal Aerodynamics: A Pilot Study.
    Hamdan AT; Cherobin GB; Voegels RL; Rhee JS; Garcia GJM
    Otolaryngol Head Neck Surg; 2024 Jun; 170(6):1696-1704. PubMed ID: 38461407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhinomanometry Versus Computational Fluid Dynamics: Correlated, but Different Techniques.
    Cherobin GB; Voegels RL; Pinna FR; Gebrim EMMS; Bailey RS; Garcia GJM
    Am J Rhinol Allergy; 2021 Mar; 35(2):245-255. PubMed ID: 32806938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency.
    Gaberino C; Rhee JS; Garcia GJ
    Respir Physiol Neurobiol; 2017 Apr; 238():23-32. PubMed ID: 28089607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computed nasal resistance compared with patient-reported symptoms in surgically treated nasal airway passages: a preliminary report.
    Kimbell JS; Garcia GJ; Frank DO; Cannon DE; Pawar SS; Rhee JS
    Am J Rhinol Allergy; 2012; 26(3):e94-8. PubMed ID: 22643935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Adhesions on Nasal Airflow: A Quantitative Analysis Using Computational Fluid Dynamics.
    Senanayake P; Warfield-McAlpine P; Salati H; Bradshaw K; Wong E; Inthavong K; Singh N
    Am J Rhinol Allergy; 2023 May; 37(3):273-283. PubMed ID: 36373577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual septoplasty: a method to predict surgical outcomes for patients with nasal airway obstruction.
    Moghaddam MG; Garcia GJM; Frank-Ito DO; Kimbell JS; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Apr; 15(4):725-735. PubMed ID: 32078099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrowed Posterior Nasal Airway Limits Efficacy of Anterior Septoplasty.
    Campbell DA; Moghaddam MG; Rhee JS; Garcia GJM
    Facial Plast Surg Aesthet Med; 2021; 23(1):13-20. PubMed ID: 32471319
    [No Abstract]   [Full Text] [Related]  

  • 16. Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics.
    Dayal A; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2016 Sep; 155(3):518-25. PubMed ID: 27165673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Virtual Nose: Assessment of Static Nasal Airway Obstruction Using Computational Simulations and 3D-Printed Models.
    Reid AWN; Chen DH; Wen H; Li H; Wang Z; Hu Y; Zhang F; Bele E; Tan PJ; East C
    Facial Plast Surg Aesthet Med; 2022; 24(1):20-26. PubMed ID: 33902335
    [No Abstract]   [Full Text] [Related]  

  • 18. Impact of Middle Turbinectomy on Airflow to the Olfactory Cleft: A Computational Fluid Dynamics Study.
    Alam S; Li C; Bradburn KH; Zhao K; Lee TS
    Am J Rhinol Allergy; 2019 May; 33(3):263-268. PubMed ID: 30543120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction.
    Kimbell JS; Frank DO; Laud P; Garcia GJ; Rhee JS
    J Biomech; 2013 Oct; 46(15):2634-43. PubMed ID: 24063885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of nasal adhesions on airflow and mucosal cooling - A computational fluid dynamics analysis.
    Senanayake P; Salati H; Wong E; Bradshaw K; Shang Y; Singh N; Inthavong K
    Respir Physiol Neurobiol; 2021 Nov; 293():103719. PubMed ID: 34147672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.