BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31267388)

  • 1. Silicic protective surface films for pyrite oxidation suppression to control acid mine drainage at the source.
    Wang S; Zhao Y; Li S
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25725-25732. PubMed ID: 31267388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silane-based coatings on the pyrite for remediation of acid mine drainage.
    Diao Z; Shi T; Wang S; Huang X; Zhang T; Tang Y; Zhang X; Qiu R
    Water Res; 2013 Sep; 47(13):4391-402. PubMed ID: 23764590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides.
    Chopard A; Plante B; Benzaazoua M; Bouzahzah H; Marion P
    Chemosphere; 2017 Jan; 166():281-291. PubMed ID: 27705822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland).
    Migaszewski ZM; Gałuszka A; Dołęgowska S
    Environ Pollut; 2019 Jan; 244():898-906. PubMed ID: 30469284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of silica protective layer on pyrite surface: a column study.
    Kollias K; Mylona E; Papassiopi N; Xenidis A
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):26780-26792. PubMed ID: 28920143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea.
    Kim MJ; Ahn KH; Jung Y
    Chemosphere; 2002 Oct; 49(3):307-12. PubMed ID: 12363309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of pyrite oxidation by iron 8-hydroxyquinoline.
    Lan Y; Huang X; Deng B
    Arch Environ Contam Toxicol; 2002 Aug; 43(2):168-74. PubMed ID: 12115042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characterization of oxidation on pyrite by in situ attenuated total reflection-Fourier transform infrared spectroscopy].
    Zhang P; Chen YH; Liu J; Wang CL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2554-6. PubMed ID: 19271488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions.
    Pierre Louis AM; Yu H; Shumlas SL; Van Aken B; Schoonen MA; Strongin DR
    Environ Sci Technol; 2015 Jul; 49(13):7701-8. PubMed ID: 26018867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of sulfide oxidation in waste rock by the addition of lime kiln dust.
    Nyström E; Kaasalainen H; Alakangas L
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25945-25957. PubMed ID: 31273653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new organosilane passivation agent prepared at ambient temperatures to inhibit pyrite oxidation for acid mine drainage control.
    Dong Y; Liu Z; Liu W; Lin H
    J Environ Manage; 2022 Oct; 320():115835. PubMed ID: 35952563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.
    Sima M; Dold B; Frei L; Senila M; Balteanu D; Zobrist J
    J Hazard Mater; 2011 May; 189(3):624-39. PubMed ID: 21316846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides.
    Placencia-Gómez E; Slater L; Ntarlagiannis D; Binley A
    J Contam Hydrol; 2013 May; 148():25-38. PubMed ID: 23531431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Definition of redox and pH influence in the AMD mine system using a fuzzy qualitative tool (Iberian Pyrite Belt, SW Spain).
    de la Torre ML; Grande JA; Valente T; Perez-Ostalé E; Santisteban M; Aroba J; Ramos I
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5451-8. PubMed ID: 26566614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil.
    Galhardi JA; Bonotto DM
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18911-27. PubMed ID: 27335014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments.
    Pérez-López R; Nieto JM; de Almodóvar GR
    Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of pyrite oxidation in fresh mine tailings under near-neutral conditions.
    Alakangas L; Lundberg A; Nason P
    J Environ Monit; 2012 Aug; 14(8):2245-53. PubMed ID: 22777533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions.
    Liu L; Guo D; Qiu G; Liu C; Ning Z
    J Environ Manage; 2022 Sep; 317():115425. PubMed ID: 35751250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.