These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 31267582)
1. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells. Chen D; Wen J; Zeng S; Ma H Electrophoresis; 2019 Nov; 40(21):2845-2852. PubMed ID: 31267582 [TBL] [Abstract][Full Text] [Related]
2. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'. Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Microfluidic Ceiling Designs for the Capture of Circulating Tumor Cells on a Microarray Platform. Liu HY; Koch C; Haller A; Joosse SA; Kumar R; Vellekoop MJ; Horst LJ; Keller L; Babayan A; Failla AV; Jensen J; Peine S; Keplinger F; Fuchs H; Pantel K; Hirtz M Adv Biosyst; 2020 Feb; 4(2):e1900162. PubMed ID: 32293134 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis. Gogoi P; Sepehri S; Chow W; Handique K; Wang Y Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840 [TBL] [Abstract][Full Text] [Related]
5. Specific capture and release of circulating tumor cells using a multifunctional nanofiber-integrated microfluidic chip. Xiao Y; Wang M; Lin L; Du L; Shen M; Shi X Nanomedicine (Lond); 2019 Jan; 14(2):183-199. PubMed ID: 30566024 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic Devices for Circulating Tumor Cells Isolation and Subsequent Analysis. Khamenehfar A; Li PC Curr Pharm Biotechnol; 2016; 17(9):810-21. PubMed ID: 26927214 [TBL] [Abstract][Full Text] [Related]
7. Efficient Purification and Release of Circulating Tumor Cells by Synergistic Effect of Biomarker and SiO2 @Gel-Microbead-Based Size Difference Amplification. Huang Q; Cai B; Chen B; Rao L; He Z; He R; Guo F; Zhao L; Kondamareddy KK; Liu W; Guo S; Zhao XZ Adv Healthc Mater; 2016 Jul; 5(13):1554-9. PubMed ID: 27028055 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies. Sun YS Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318 [TBL] [Abstract][Full Text] [Related]
9. A Cascaded Phase-Transfer Microfluidic Chip with Magnetic Probe for High-Activity Sorting, Purification, Release, and Detection of Circulating Tumor Cells. Nian M; Chen B; He M; Hu B Anal Chem; 2024 Jan; 96(2):766-774. PubMed ID: 38158582 [TBL] [Abstract][Full Text] [Related]
10. High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites. Xu H; Dong B; Xu S; Xu S; Sun X; Sun J; Yang Y; Xu L; Bai X; Zhang S; Yin Z; Song H Biomaterials; 2017 Sep; 138():69-79. PubMed ID: 28554009 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic cell sorter (μFCS) for on-chip capture and analysis of single cells. Chung J; Shao H; Reiner T; Issadore D; Weissleder R; Lee H Adv Healthc Mater; 2012 Jul; 1(4):432-6. PubMed ID: 23184773 [TBL] [Abstract][Full Text] [Related]
12. Automated Microfluidic Filtration and Immunocytochemistry Detection System for Capture and Enumeration of Circulating Tumor Cells and Other Rare Cell Populations in Blood. Pugia M; Magbanua MJM; Park JW Methods Mol Biol; 2017; 1634():119-131. PubMed ID: 28819845 [TBL] [Abstract][Full Text] [Related]
13. Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices. Shi W; Wang S; Maarouf A; Uhl CG; He R; Yunus D; Liu Y Lab Chip; 2017 Sep; 17(19):3291-3299. PubMed ID: 28840927 [TBL] [Abstract][Full Text] [Related]
14. Design and Application of Microfluidic Capture Device for Physical-Magnetic Isolation of MCF-7 Circulating Tumor Cells. Bendre A; Somasekhara D; Nadumane VK; Sriram G; Bilimagga RS; Kurkuri MD Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920612 [TBL] [Abstract][Full Text] [Related]
15. Development of a low-cost magnetic microfluidic chip for circulating tumour cell capture. Xia J; Chen X; Zhou CZ; Li YG; Peng ZH IET Nanobiotechnol; 2011 Dec; 5(4):114-20. PubMed ID: 22149866 [TBL] [Abstract][Full Text] [Related]
16. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096 [TBL] [Abstract][Full Text] [Related]
17. A microfluidic system based on the monoclonal antibody BCMab1 specifically captures circulating tumor cells from bladder cancer patients. Wang Y; Liu Q; Men T; Liang Y; Niu H; Wang J J Biomater Sci Polym Ed; 2020 Jun; 31(9):1199-1210. PubMed ID: 32275489 [TBL] [Abstract][Full Text] [Related]
18. DNA Nanolithography Enables a Highly Ordered Recognition Interface in a Microfluidic Chip for the Efficient Capture and Release of Circulating Tumor Cells. Zhang J; Lin B; Wu L; Huang M; Li X; Zhang H; Song J; Wang W; Zhao G; Song Y; Yang C Angew Chem Int Ed Engl; 2020 Aug; 59(33):14115-14119. PubMed ID: 32394524 [TBL] [Abstract][Full Text] [Related]
19. A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. Tang M; Wen CY; Wu LL; Hong SL; Hu J; Xu CM; Pang DW; Zhang ZL Lab Chip; 2016 Apr; 16(7):1214-23. PubMed ID: 26928405 [TBL] [Abstract][Full Text] [Related]
20. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. Fang S; Tian H; Li X; Jin D; Li X; Kong J; Yang C; Yang X; Lu Y; Luo Y; Lin B; Niu W; Liu T PLoS One; 2017; 12(4):e0175050. PubMed ID: 28369094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]