BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 31267597)

  • 21. Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund's adjuvant.
    Lorentzen JC; Issazadeh S; Storch M; Mustafa MI; Lassman H; Linington C; Klareskog L; Olsson T
    J Neuroimmunol; 1995 Dec; 63(2):193-205. PubMed ID: 8550817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Autoimmune Encephalomyelitis (EAE) Model of Cynomolgus Macaques Induced by Recombinant Human MOG1-125 (rhMOG1-125) Protein and MOG34-56 Peptide.
    Peng Z; Zhang L; Wang H; He X; Peng X; Zhang Q; Liu H; Rao J; Wang H; Wu J; Sun Y
    Protein Pept Lett; 2018 Feb; 24(12):1166-1178. PubMed ID: 29141529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis.
    Recks MS; Stormanns ER; Bader J; Arnhold S; Addicks K; Kuerten S
    Clin Immunol; 2013 Oct; 149(1):32-45. PubMed ID: 23899992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats: mechanisms implicated.
    Pérez-Nievas BG; García-Bueno B; Madrigal JL; Leza JC
    J Neuroinflammation; 2010 Oct; 7():60. PubMed ID: 20929574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation.
    Petratos S; Ozturk E; Azari MF; Kenny R; Lee JY; Magee KA; Harvey AR; McDonald C; Taghian K; Moussa L; Mun Aui P; Siatskas C; Litwak S; Fehlings MG; Strittmatter SM; Bernard CC
    Brain; 2012 Jun; 135(Pt 6):1794-818. PubMed ID: 22544872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual functional and histopathological correlation in experimental autoimmune optic neuritis.
    Matsunaga Y; Kezuka T; An X; Fujita K; Matsuyama N; Matsuda R; Usui Y; Yamakawa N; Kuroda M; Goto H
    Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):6964-71. PubMed ID: 22969072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct pathological patterns in relapsing-remitting and chronic models of experimental autoimmune enchephalomyelitis and the neuroprotective effect of glatiramer acetate.
    Aharoni R; Vainshtein A; Stock A; Eilam R; From R; Shinder V; Arnon R
    J Autoimmun; 2011 Nov; 37(3):228-41. PubMed ID: 21752599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevation of AQP4 and selective cytokines in experimental autoimmune encephalitis mice provides some potential biomarkers in optic neuritis and demyelinating diseases.
    Sun L; Weng H; Li Z
    Int J Clin Exp Pathol; 2015; 8(12):15749-58. PubMed ID: 26884844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically.
    Liu Y; You C; Zhang Z; Zhang J; Yan H
    Neuromolecular Med; 2015 Dec; 17(4):391-403. PubMed ID: 26318182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of geranylgeranylacetone on optic neuritis in experimental autoimmune encephalomyelitis.
    Guo X; Harada C; Namekata K; Kikushima K; Mitamura Y; Yoshida H; Matsumoto Y; Harada T
    Neurosci Lett; 2009 Oct; 462(3):281-5. PubMed ID: 19616065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis.
    Balatoni B; Storch MK; Swoboda EM; Schönborn V; Koziel A; Lambrou GN; Hiestand PC; Weissert R; Foster CA
    Brain Res Bull; 2007 Oct; 74(5):307-16. PubMed ID: 17845905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High interleukin-10 expression within the central nervous system may be important for initiation of recovery of Dark Agouti rats from experimental autoimmune encephalomyelitis.
    Blaževski J; Petković F; Momčilović M; Jevtic B; Miljković D; Mostarica Stojković M
    Immunobiology; 2013 Sep; 218(9):1192-9. PubMed ID: 23664544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MOG-induced experimental autoimmune encephalomyelitis in the rat species triggers anti-neurofascin antibody response that is genetically regulated.
    Flytzani S; Guerreiro-Cacais AO; N'diaye M; Lindner M; Linington C; Meinl E; Stridh P; Jagodic M; Olsson T
    J Neuroinflammation; 2015 Oct; 12():194. PubMed ID: 26511327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linkage analysis of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the rat identifies a locus controlling demyelination on chromosome 18.
    Dahlman I; Wallström E; Weissert R; Storch M; Kornek B; Jacobsson L; Linington C; Luthman H; Lassmann H; Olsson T
    Hum Mol Genet; 1999 Nov; 8(12):2183-90. PubMed ID: 10545597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE.
    Eltayeb S; Berg AL; Lassmann H; Wallström E; Nilsson M; Olsson T; Ericsson-Dahlstrand A; Sunnemark D
    J Neuroinflammation; 2007 May; 4():14. PubMed ID: 17484785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of Degenerating 21.5 kDa Isoform of Myelin Basic Protein in the Pathogenesis of the Relapse in Murine Relapsing-Remitting Experimental Autoimmune Encephalomyelitis and MS Autopsied Brain.
    Takano C; Takano T; Masumura M; Nakamura R; Koda S; Bochimoto H; Yoshida S; Bando Y
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Ion channels and demyelination: basis of a treatment of experimental autoimmune encephalomyelitis (EAE) by potassium channel blockers].
    Devaux J; Beeton C; Béraud E; Crest M
    Rev Neurol (Paris); 2004 May; 160(5 Pt 2):S16-27. PubMed ID: 15269656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The extracellular domain of myelin oligodendrocyte glycoprotein elicits atypical experimental autoimmune encephalomyelitis in rat and Macaque species.
    Curtis AD; Taslim N; Reece SP; Grebenciucova E; Ray RH; Rosenbaum MD; Wardle RL; Van Scott MR; Mannie MD
    PLoS One; 2014; 9(10):e110048. PubMed ID: 25303101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis.
    Iglesias A; Bauer J; Litzenburger T; Schubart A; Linington C
    Glia; 2001 Nov; 36(2):220-34. PubMed ID: 11596130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Novel Sensory Wave (P25) in Myelin Oligodendrocyte Glycoprotein-induced Experimental Autoimmune Encephalomyelitis Murine Model.
    Shulman Y; Finkelstein L; Levi Y; Kovalchuk D; Weksler A; Reichstein A; Kigel-Tsur K; Davidi M; Levi I; Schauder A; Rubin K; Achituv E; Castel D; Meilin S
    J Pain; 2024 Jan; 25(1):73-87. PubMed ID: 37524220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.