These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31267693)

  • 1. The Prospects for Biodegradable Zinc in Wound Closure Applications.
    Venezuela JJD; Johnston S; Dargusch MS
    Adv Healthc Mater; 2019 Aug; 8(16):e1900408. PubMed ID: 31267693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects.
    Yang N; Venezuela J; Almathami S; Dargusch M
    Biomaterials; 2022 Jan; 280():121301. PubMed ID: 34922270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.
    Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H
    Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review.
    Venezuela J; Dargusch MS
    Acta Biomater; 2019 Mar; 87():1-40. PubMed ID: 30660777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility.
    Li G; Yang H; Zheng Y; Chen XH; Yang JA; Zhu D; Ruan L; Takashima K
    Acta Biomater; 2019 Oct; 97():23-45. PubMed ID: 31349057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications.
    Katarivas Levy G; Leon A; Kafri A; Ventura Y; Drelich JW; Goldman J; Vago R; Aghion E
    J Mater Sci Mater Med; 2017 Sep; 28(11):174. PubMed ID: 28956207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc-based subcuticular absorbable staples: An in vivo and in vitro study.
    Yang N; Venezuela J; Allavena R; Lau C; Dargusch M
    Acta Biomater; 2023 Sep; 167():593-607. PubMed ID: 37369266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro interactions of blood, platelet, and fibroblast with biodegradable magnesium-zinc-strontium alloys.
    Nguyen TY; Cipriano AF; Guan RG; Zhao ZY; Liu H
    J Biomed Mater Res A; 2015 Sep; 103(9):2974-86. PubMed ID: 25690931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in biodegradable metals for medical sutures: a critical review.
    Seitz JM; Durisin M; Goldman J; Drelich JW
    Adv Healthc Mater; 2015 Sep; 4(13):1915-36. PubMed ID: 26172399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable Surgical Staple Composed of Magnesium Alloy.
    Amano H; Hanada K; Hinoki A; Tainaka T; Shirota C; Sumida W; Yokota K; Murase N; Oshima K; Chiba K; Tanaka Y; Uchida H
    Sci Rep; 2019 Oct; 9(1):14671. PubMed ID: 31604974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel biodegradable magnesium skin staple: A safety and functional evaluation.
    Wu YC; Hsieh MW; Wang WT; Chang YH; Lee SS; Huang SH; Hou MF; Tseng CC; Kuo YR
    Asian J Surg; 2024 Jul; 47(7):3048-3055. PubMed ID: 38431472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.
    Li HF; Xie XH; Zheng YF; Cong Y; Zhou FY; Qiu KJ; Wang X; Chen SH; Huang L; Tian L; Qin L
    Sci Rep; 2015 May; 5():10719. PubMed ID: 26023878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements.
    Chen Y; Dou J; Yu H; Chen C
    J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemocompatibility of biodegradable Zn-0.8 wt% (Cu, Mn, Li) alloys.
    Yin YX; Zhou C; Shi YP; Shi ZZ; Lu TH; Hao Y; Liu CH; Wang X; Zhang HJ; Wang LN
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109896. PubMed ID: 31499977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances on biodegradable zinc-silver-based alloys for biomedical applications.
    Xiao X; Liu E; Shao J; Ge S
    J Appl Biomater Funct Mater; 2021; 19():22808000211062407. PubMed ID: 34903075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel zinc alloys for biodegradable surgical staples.
    Amano H; Miyake K; Hinoki A; Yokota K; Kinoshita F; Nakazawa A; Tanaka Y; Seto Y; Uchida H
    World J Clin Cases; 2020 Feb; 8(3):504-516. PubMed ID: 32110659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials.
    Brar HS; Wong J; Manuel MV
    J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications.
    Tang Z; Niu J; Huang H; Zhang H; Pei J; Ou J; Yuan G
    J Mech Behav Biomed Mater; 2017 Aug; 72():182-191. PubMed ID: 28499166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on the exploitation of biodegradable magnesium-based composites for medical applications.
    Yang J; Koons GL; Cheng G; Zhao L; Mikos AG; Cui F
    Biomed Mater; 2018 Jan; 13(2):022001. PubMed ID: 28954931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation.
    Vojtěch D; Kubásek J; Serák J; Novák P
    Acta Biomater; 2011 Sep; 7(9):3515-22. PubMed ID: 21621017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.