These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

755 related articles for article (PubMed ID: 31267735)

  • 1. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function.
    Wang H; He M; Liu H; Guan Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties.
    Wang N; Xiong D; Deng Y; Shi Y; Wang K
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6260-72. PubMed ID: 25749123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.
    Su F; Yao K
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8762-70. PubMed ID: 24796223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.
    Long M; Peng S; Deng W; Yang X; Miao K; Wen N; Miao X; Deng W
    J Colloid Interface Sci; 2017 Dec; 508():18-27. PubMed ID: 28818653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sandpaper as template for a robust superhydrophobic surface with self-cleaning and anti-snow/icing performances.
    Qing Y; Long C; An K; Hu C; Liu C
    J Colloid Interface Sci; 2019 Jul; 548():224-232. PubMed ID: 31004955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-Baxter Stability and Durability.
    Fan P; Pan R; Zhong M
    Langmuir; 2019 Dec; 35(51):16693-16711. PubMed ID: 31782653
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Feng X; Chu J; Tian G; Wang Z; Zhou W; Zhang X; Lian Z
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37919234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Scale Superhydrophobic Surface with Excellent Stability and Solar-Thermal Performance for Highly Efficient Anti-Icing and Deicing.
    Zhang F; Yan H; Chen M
    Small; 2024 Aug; 20(32):e2312226. PubMed ID: 38511539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the Anti-Icing and Photothermal Deicing Properties.
    Xie Z; Wang H; Geng Y; Li M; Deng Q; Tian Y; Chen R; Zhu X; Liao Q
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48308-48321. PubMed ID: 34587444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensively durable superhydrophobic metallic hierarchical surfaces
    Han J; Cai M; Lin Y; Liu W; Luo X; Zhang H; Wang K; Zhong M
    RSC Adv; 2018 Feb; 8(12):6733-6744. PubMed ID: 35540429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles.
    Wu Y; Zhao M; Guo Z
    J Colloid Interface Sci; 2017 Nov; 506():649-658. PubMed ID: 28763769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Easily Enlarged Superhydrophobic Copper Surfaces with Enhanced Corrosion Resistance, Excellent Self-Cleaning and Anti-Icing Performance by a Facile Method.
    Shi X; Zhao L; Wang J; Feng L
    J Nanosci Nanotechnol; 2020 Oct; 20(10):6317-6325. PubMed ID: 32384981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces.
    Yan X; Huang Z; Sett S; Oh J; Cha H; Li L; Feng L; Wu Y; Zhao C; Orejon D; Chen F; Miljkovic N
    ACS Nano; 2019 Apr; 13(4):4160-4173. PubMed ID: 30933473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly robust, concrete-inspired superhydrophobic nanocomposite coating.
    Binrui W; Qiong Q; Xuan J; Dong X; Li K; Liping S; Xin C; Qizhi Z; Feiyan F; Xian Y
    Nanoscale; 2023 Dec; 15(47):19304-19313. PubMed ID: 37997388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Wang P; Zhao T; Bian R; Wang G; Liu H
    ACS Nano; 2017 Dec; 11(12):12385-12391. PubMed ID: 29140678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance.
    Chen C; Tian Z; Luo X; Jiang G; Hu X; Wang L; Peng R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35535994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.
    Peng S; Tian D; Yang X; Deng W
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4831-41. PubMed ID: 24593862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast and Eco-Friendly Fabrication Process for Robust, Repairable Superhydrophobic Metallic Surfaces with Tunable Water Adhesion.
    Tran NG; Chun DM
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28348-28358. PubMed ID: 35694823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.