BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 31267851)

  • 1. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry.
    Dong P; Wang X; Zheng J; Zhang X; Li Y; Wu H; Li L
    Curr Med Chem; 2020; 27(23):3924-3943. PubMed ID: 31267851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse Electron-Demand Diels-Alder Bioorthogonal Reactions.
    Wu H; Devaraj NK
    Top Curr Chem (Cham); 2016 Feb; 374(1):3. PubMed ID: 27572986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.
    Handula M; Chen KT; Seimbille Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles.
    Wu H; Devaraj NK
    Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diels-Alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation dose compared with directly labeled antibody.
    Rossin R; Läppchen T; van den Bosch SM; Laforest R; Robillard MS
    J Nucl Med; 2013 Nov; 54(11):1989-95. PubMed ID: 24092936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a (18) F-labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging.
    Denk C; Svatunek D; Filip T; Wanek T; Lumpi D; Fröhlich J; Kuntner C; Mikula H
    Angew Chem Int Ed Engl; 2014 Sep; 53(36):9655-9. PubMed ID: 24989029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse electron demand Diels-Alder reactions in chemical biology.
    Oliveira BL; Guo Z; Bernardes GJL
    Chem Soc Rev; 2017 Aug; 46(16):4895-4950. PubMed ID: 28660957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Organo [
    Otaru S; Imlimthan S; Sarparanta M; Helariutta K; Wähälä K; Airaksinen AJ
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32156020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of tetrazine-containing [2 + 1] complexes of
    Yazdani A; Janzen N; Czorny S; Ungard RG; Miladinovic T; Singh G; Valliant JF
    Dalton Trans; 2017 Oct; 46(42):14691-14699. PubMed ID: 28640297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton.
    Lee Y; Cho W; Sung J; Kim E; Park SB
    J Am Chem Soc; 2018 Jan; 140(3):974-983. PubMed ID: 29240995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Highly Reactive and Low Lipophilicity Fluorine-18 Labeled Tetrazine Derivative for Pretargeted PET Imaging.
    Keinänen O; Li XG; Chenna NK; Lumen D; Ott J; Molthoff CF; Sarparanta M; Helariutta K; Vuorinen T; Windhorst AD; Airaksinen AJ
    ACS Med Chem Lett; 2016 Jan; 7(1):62-6. PubMed ID: 26819667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals.
    Mushtaq S; Yun SJ; Jeon J
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31581645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, Synthesis, and Evaluation of a Low-Molecular-Weight (11)C-Labeled Tetrazine for Pretargeted PET Imaging Applying Bioorthogonal in Vivo Click Chemistry.
    Denk C; Svatunek D; Mairinger S; Stanek J; Filip T; Matscheko D; Kuntner C; Wanek T; Mikula H
    Bioconjug Chem; 2016 Jul; 27(7):1707-12. PubMed ID: 27308894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry.
    Zhong X; Yan J; Ding X; Su C; Xu Y; Yang M
    Bioconjug Chem; 2023 Mar; 34(3):457-476. PubMed ID: 36811499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Tumor-to-Background Contrast through Hydrophilic Tetrazines: The Construction of
    Feng H; Zhang H; Wang M; Vannam R; Wang H; Yan X; Ouyang W; Jia X; Fox JM; Li Z
    Chemistry; 2020 Apr; 26(21):4690-4694. PubMed ID: 32030822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and ex vivo biodistribution of two
    Lambidis E; Lumén D; Koskipahta E; Imlimthan S; Lopez BB; Sánchez AIF; Sarparanta M; Cheng RH; Airaksinen AJ
    Nucl Med Biol; 2022; 114-115():151-161. PubMed ID: 35680503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (18)F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels-Alder Click Chemistry.
    Meyer JP; Houghton JL; Kozlowski P; Abdel-Atti D; Reiner T; Pillarsetty NV; Scholz WW; Zeglis BM; Lewis JS
    Bioconjug Chem; 2016 Feb; 27(2):298-301. PubMed ID: 26479967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Photon and Multicolor Fluorogenic Bioorthogonal Probes Based on Tetrazine-Conjugated Naphthalene Fluorophores.
    Kim D; Lee JH; Koo JY; Kim HM; Park SB
    Bioconjug Chem; 2020 May; 31(5):1545-1550. PubMed ID: 32297734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes.
    Choi SK; Kim J; Kim E
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33810254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific conjugation allows modulation of click reaction stoichiometry for pretargeted SPECT imaging.
    Mandikian D; Rafidi H; Adhikari P; Venkatraman P; Nazarova L; Fung G; Figueroa I; Ferl GZ; Ulufatu S; Ho J; McCaughey C; Lau J; Yu SF; Prabhu S; Sadowsky J; Boswell CA
    MAbs; 2018; 10(8):1269-1280. PubMed ID: 30199303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.