These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31267864)

  • 21. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
    Ni Q; Chen L
    Comb Chem High Throughput Screen; 2017; 20(7):612-621. PubMed ID: 28292249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier.
    Lin J; Chen H; Li S; Liu Y; Li X; Yu B
    Artif Intell Med; 2019 Jul; 98():35-47. PubMed ID: 31521251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fuzzy based algorithms to predict MicroRNA regulated protein interaction pathways and ranking estimation in Arabidopsis thaliana.
    Manikandan P; Ramyachitra D; Nandhini R
    Gene; 2019 Apr; 692():170-175. PubMed ID: 30641215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines.
    Tharwat A; Moemen YS; Hassanien AE
    J Biomed Inform; 2017 Apr; 68():132-149. PubMed ID: 28286029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.
    An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP
    Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features.
    Zhang X; Wang J; Li J; Chen W; Liu C
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):120. PubMed ID: 30598114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of drug-target interaction by a random walk with restart method on an interactome network.
    Lee I; Nam H
    BMC Bioinformatics; 2018 Jun; 19(Suppl 8):208. PubMed ID: 29897326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heter-LP: A heterogeneous label propagation algorithm and its application in drug repositioning.
    Lotfi Shahreza M; Ghadiri N; Mousavi SR; Varshosaz J; Green JR
    J Biomed Inform; 2017 Apr; 68():167-183. PubMed ID: 28300647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources.
    Nascimento ACA; Prudêncio RBC; Costa IG
    Methods Mol Biol; 2019; 1903():281-289. PubMed ID: 30547449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A meta-learning framework using representation learning to predict drug-drug interaction.
    Deepika SS; Geetha TV
    J Biomed Inform; 2018 Aug; 84():136-147. PubMed ID: 29959033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug-target interaction prediction by random walk on the heterogeneous network.
    Chen X; Liu MX; Yan GY
    Mol Biosyst; 2012 Jul; 8(7):1970-8. PubMed ID: 22538619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drug-Drug Interactions Prediction Using Fingerprint Only.
    Ran B; Chen L; Li M; Han Y; Dai Q
    Comput Math Methods Med; 2022; 2022():7818480. PubMed ID: 35586666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating Biological Networks for Drug Target Prediction and Prioritization.
    Ji X; Freudenberg JM; Agarwal P
    Methods Mol Biol; 2019; 1903():203-218. PubMed ID: 30547444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.