These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31267865)

  • 61. Ask the experts: computational chemistry.
    Matta CF; Hutter MC
    Future Med Chem; 2018 Jul; 10(13):1521-1524. PubMed ID: 29992825
    [No Abstract]   [Full Text] [Related]  

  • 62. Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data.
    Matthews EJ; Kruhlak NL; Benz RD; Contrera JF
    Curr Drug Discov Technol; 2004 Jan; 1(1):61-76. PubMed ID: 16472220
    [TBL] [Abstract][Full Text] [Related]  

  • 63. PASS Targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach.
    Pogodin PV; Lagunin AA; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2015; 26(10):783-93. PubMed ID: 26305108
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development.
    Kunz M; Liang C; Nilla S; Cecil A; Dandekar T
    Database (Oxford); 2016; 2016():. PubMed ID: 27055828
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Global mapping of pharmacological space.
    Paolini GV; Shapland RH; van Hoorn WP; Mason JS; Hopkins AL
    Nat Biotechnol; 2006 Jul; 24(7):805-15. PubMed ID: 16841068
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations.
    Myshkin E; Brennan R; Khasanova T; Sitnik T; Serebriyskaya T; Litvinova E; Guryanov A; Nikolsky Y; Nikolskaya T; Bureeva S
    Chem Biol Drug Des; 2012 Sep; 80(3):406-16. PubMed ID: 22583392
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identifying adverse drug reactions and drug-induced diseases using network-based drug mapping.
    Shoshi A; Ogultarhan V; Hoppe T; Kormeier B; Müller U; Hofestädt R
    J Bioinform Comput Biol; 2015 Feb; 13(1):1540007. PubMed ID: 25666653
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: Part C: use of QSAR and an expert system for the estimation of the mechanism of action of drug-induced hepatobiliary and urinary tract toxicities.
    Matthews EJ; Kruhlak NL; Benz RD; Aragonés Sabaté D; Marchant CA; Contrera JF
    Regul Toxicol Pharmacol; 2009 Jun; 54(1):43-65. PubMed ID: 19422100
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Docking simulations between drugs and HLA molecules associated with idiosyncratic drug toxicity.
    Hirayama N
    Drug Metab Pharmacokinet; 2017 Feb; 32(1):31-39. PubMed ID: 27964952
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms.
    Chen L; Liu T; Zhao X
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2228-2240. PubMed ID: 29247833
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Toxic Colors: The Use of Deep Learning for Predicting Toxicity of Compounds Merely from Their Graphic Images.
    Fernandez M; Ban F; Woo G; Hsing M; Yamazaki T; LeBlanc E; Rennie PS; Welch WJ; Cherkasov A
    J Chem Inf Model; 2018 Aug; 58(8):1533-1543. PubMed ID: 30063345
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets.
    Clark AM; Dole K; Coulon-Spektor A; McNutt A; Grass G; Freundlich JS; Reynolds RC; Ekins S
    J Chem Inf Model; 2015 Jun; 55(6):1231-45. PubMed ID: 25994950
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chemical substructures in drug discovery.
    Merlot C; Domine D; Cleva C; Church DJ
    Drug Discov Today; 2003 Jul; 8(13):594-602. PubMed ID: 12850335
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interaction network among functional drug groups.
    Lee M; Park K; Kim D
    BMC Syst Biol; 2013 Oct; 7 Suppl 3(Suppl 3):S4. PubMed ID: 24555875
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In silico profiling of systemic effects of drugs to predict unexpected interactions.
    Yoo S; Noh K; Shin M; Park J; Lee KH; Nam H; Lee D
    Sci Rep; 2018 Jan; 8(1):1612. PubMed ID: 29371651
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In silico systems for predicting chemical-induced side effects using known and potential chemical protein interactions, enabling mechanism estimation.
    Amano Y; Honda H; Sawada R; Nukada Y; Yamane M; Ikeda N; Morita O; Yamanishi Y
    J Toxicol Sci; 2020; 45(3):137-149. PubMed ID: 32147637
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In silico modeling for prediction of drug-induced adverse reactions and environmental hazards using QSAR tools.
    Saha A; Roy K
    Curr Drug Saf; 2012 Sep; 7(4):255-6. PubMed ID: 23278211
    [No Abstract]   [Full Text] [Related]  

  • 78. Pathway analysis for design of promiscuous drugs and selective drug mixtures.
    Sivachenko A; Kalinin A; Yuryev A
    Curr Drug Discov Technol; 2006 Dec; 3(4):269-77. PubMed ID: 17430103
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Analysis of drug-induced effect patterns to link structure and side effects of medicines.
    Fliri AF; Loging WT; Thadeio PF; Volkmann RA
    Nat Chem Biol; 2005 Dec; 1(7):389-97. PubMed ID: 16370374
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Predicting neurological Adverse Drug Reactions based on biological, chemical and phenotypic properties of drugs using machine learning models.
    Jamal S; Goyal S; Shanker A; Grover A
    Sci Rep; 2017 Apr; 7(1):872. PubMed ID: 28408735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.