These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 3126807)
1. Two histidine residues are essential for ribonuclease T1 activity as is the case for ribonuclease A. Nishikawa S; Morioka H; Kim HJ; Fuchimura K; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M Biochemistry; 1987 Dec; 26(26):8620-4. PubMed ID: 3126807 [TBL] [Abstract][Full Text] [Related]
2. Histidine-40 of ribonuclease T1 acts as base catalyst when the true catalytic base, glutamic acid-58, is replaced by alanine. Steyaert J; Hallenga K; Wyns L; Stanssens P Biochemistry; 1990 Sep; 29(38):9064-72. PubMed ID: 1980211 [TBL] [Abstract][Full Text] [Related]
4. 1H-NMR investigation of the interaction between RNase T1 and a novel substrate analog, 2'-deoxy-2'-fluoroguanylyl-(3'-5')uridine. Shibata Y; Shimada I; Ikehara M; Miyazawa T; Inagaki F FEBS Lett; 1988 Aug; 235(1-2):237-40. PubMed ID: 2841155 [TBL] [Abstract][Full Text] [Related]
5. Modification of Glu 58, an amino acid of the active center of ribonuclease T1, to Gln and Asp. Nishikawa S; Morioka H; Fuchimura K; Tanaka T; Uesugi S; Ohtsuka E; Ikehara M Biochem Biophys Res Commun; 1986 Jul; 138(2):789-94. PubMed ID: 2874806 [TBL] [Abstract][Full Text] [Related]
6. Contribution of histidine residues to the conformational stability of ribonuclease T1 and mutant Glu-58----Ala. McNutt M; Mullins LS; Raushel FM; Pace CN Biochemistry; 1990 Aug; 29(33):7572-6. PubMed ID: 1980207 [TBL] [Abstract][Full Text] [Related]
7. Increase in nucleolytic activity of ribonuclease T1 by substitution of tryptophan 45 for tyrosine 45. Nishikawa S; Morioka H; Kimura T; Ueda Y; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M Eur J Biochem; 1988 Apr; 173(2):389-94. PubMed ID: 3129293 [TBL] [Abstract][Full Text] [Related]
8. Glu 46 of ribonuclease T1 is an essential residue for the recognition of guanine base. Nishikawa S; Kimura T; Morioka H; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M Biochem Biophys Res Commun; 1988 Jan; 150(1):68-74. PubMed ID: 3122758 [TBL] [Abstract][Full Text] [Related]
9. Identification of two essential histidine residues of ribonuclease T2 from Aspergillus oryzae. Kawata Y; Sakiyama F; Hayashi F; Kyogoku Y Eur J Biochem; 1990 Jan; 187(1):255-62. PubMed ID: 2298207 [TBL] [Abstract][Full Text] [Related]
10. Cloning and nucleotide sequence of the ribonuclease T1 gene (rntA) from Aspergillus oryzae and its expression in Saccharomyces cerevisiae and Aspergillus oryzae. Fujii T; Yamaoka H; Gomi K; Kitamoto K; Kumagai C Biosci Biotechnol Biochem; 1995 Oct; 59(10):1869-74. PubMed ID: 8534978 [TBL] [Abstract][Full Text] [Related]
11. Inquiries into the structure-function relationship of ribonuclease T1 using chemically synthesized coding sequences. Ikehara M; Ohtsuka E; Tokunaga T; Nishikawa S; Uesugi S; Tanaka T; Aoyama Y; Kikyodani S; Fujimoto K; Yanase K Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4695-9. PubMed ID: 3014504 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen-tritium exchange and nuclear magnetic resonance titrations of the histidine residues in ribonuclease St and analysis of their microenvironment. Miyamoto K; Arata Y; Matsuo H; Narita K J Biochem; 1981 Jan; 89(1):49-59. PubMed ID: 6260763 [TBL] [Abstract][Full Text] [Related]
13. Binding of vanadate (V) to ribonuclease-T1 and inosine, investigated by 51V NMR spectroscopy. Rehder D; Holst H; Quaas R; Hinrichs W; Hahn U; Saenger W J Inorg Biochem; 1989 Oct; 37(2):141-50. PubMed ID: 2513377 [TBL] [Abstract][Full Text] [Related]
14. Domain swapping in ribonuclease T1 allows the acquisition of double-stranded activity. Chen DT; Lin A Protein Eng; 2002 Dec; 15(12):997-1003. PubMed ID: 12601139 [TBL] [Abstract][Full Text] [Related]
15. Evidence that three histidine residues of a base non-specific and adenylic acid preferential ribonuclease from Rhizopus niveus are involved in the catalytic function. Ohgi K; Horiuchi H; Watanabe H; Iwama M; Takagi M; Irie M J Biochem; 1992 Jul; 112(1):132-8. PubMed ID: 1429502 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the functional interplay between the primary site and the subsite of RNase T1: kinetic analysis of single and multiple mutants for modified substrates. Steyaert J; Haikal AF; Wyns L Proteins; 1994 Apr; 18(4):318-23. PubMed ID: 8208724 [TBL] [Abstract][Full Text] [Related]
17. Nuclear magnetic resonance study on the microenvironments of histidine residues of ribonuclease T1 and carboxymethylated ribonuclease T1. Inagaki F; Kawano Y; Shimada I; Takahashi K; Miyazawa T J Biochem; 1981 Apr; 89(4):1185-95. PubMed ID: 6788755 [TBL] [Abstract][Full Text] [Related]
18. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. Pace CN; Grimsley GR; Thomson JA; Barnett BJ J Biol Chem; 1988 Aug; 263(24):11820-5. PubMed ID: 2457027 [TBL] [Abstract][Full Text] [Related]
19. Hexacyanochromate ion as a paramagnetic anion probe for active sites of enzymes. Inagaki F; Shimada I J Inorg Biochem; 1986; 28(2-3):311-7. PubMed ID: 3100720 [TBL] [Abstract][Full Text] [Related]
20. A catalytic function for the structurally conserved residue Phe 100 of ribonuclease T1. Doumen J; Gonciarz M; Zegers I; Loris R; Wyns L; Steyaert J Protein Sci; 1996 Aug; 5(8):1523-30. PubMed ID: 8844843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]