BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 31268200)

  • 21. Energy Landscapes of Supramolecular Peptide-Drug Conjugates Directed by Linker Selection and Drug Topology.
    Sis MJ; Ye Z; La Costa K; Webber MJ
    ACS Nano; 2022 Jun; 16(6):9546-9558. PubMed ID: 35639629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective.
    Zhou P; Wang J; Wang M; Hou J; Lu JR; Xu H
    J Colloid Interface Sci; 2019 Jul; 548():244-254. PubMed ID: 31004957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides.
    Gao J; Zhan J; Yang Z
    Adv Mater; 2020 Jan; 32(3):e1805798. PubMed ID: 31018025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions.
    Mann S
    Nat Mater; 2009 Oct; 8(10):781-92. PubMed ID: 19734883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular Self-Assembled Nanostructures for Cancer Immunotherapy.
    Huang Z; Song W; Chen X
    Front Chem; 2020; 8():380. PubMed ID: 32528926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.
    Garifullin R; Guler MO
    Chem Commun (Camb); 2015 Aug; 51(62):12470-3. PubMed ID: 26146021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning Supramolecular Structure and Functions of Peptide bola-Amphiphile by Solvent Evaporation-Dissolution.
    Wang A; Cui L; Debnath S; Dong Q; Yan X; Zhang X; Ulijn RV; Bai S
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21390-21396. PubMed ID: 28590718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive Multifunctional Supramolecular Assemblies of Glycopeptides Rapidly Enable Morphogenesis.
    Zhou J; Du X; Chen X; Xu B
    Biochemistry; 2018 Aug; 57(32):4867-4879. PubMed ID: 30001488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supramolecular Self-Assembly Bioinspired Synthesis of Luminescent Gold Nanocluster-Embedded Peptide Nanofibers for Temperature Sensing and Cellular Imaging.
    Zhang W; Lin D; Wang H; Li J; Nienhaus GU; Su Z; Wei G; Shang L
    Bioconjug Chem; 2017 Sep; 28(9):2224-2229. PubMed ID: 28787136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Assembling Peptide-Based Functional Biomaterials.
    Huo Y; Hu J; Yin Y; Liu P; Cai K; Ji W
    Chembiochem; 2023 Jan; 24(2):e202200582. PubMed ID: 36346708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design Principles of Peptide Based Self-Assembled Nanomaterials.
    Seoudi RS; Mechler A
    Adv Exp Med Biol; 2017; 1030():51-94. PubMed ID: 29081050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning soft nanostructures in self-assembled supramolecular gels: from morphology control to morphology-dependent functions.
    Zhang L; Wang X; Wang T; Liu M
    Small; 2015 Mar; 11(9-10):1025-38. PubMed ID: 25384759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fmoc-Dipeptide/Porphyrin Molar Ratio Dictates Energy Transfer Efficiency in Nanostructures Produced by Biocatalytic Co-Assembly.
    Wijerathne NK; Kumar M; Ulijn RV
    Chemistry; 2019 Sep; 25(51):11847-11851. PubMed ID: 31353639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyanine-Mediated DNA Nanofiber Growth with Controlled Dimensionality.
    Bousmail D; Chidchob P; Sleiman HF
    J Am Chem Soc; 2018 Aug; 140(30):9518-9530. PubMed ID: 29985613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical stimulus-responsive supramolecular hydrogel formation and shrinkage of a hydrazone-containing short peptide derivative.
    Sugiura T; Kanada T; Mori D; Sakai H; Shibata A; Kitamura Y; Ikeda M
    Soft Matter; 2020 Jan; 16(4):899-906. PubMed ID: 31829395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of optical molecules with supramolecular concepts.
    Okamoto K; Chithra P; Richards GJ; Hill JP; Ariga K
    Int J Mol Sci; 2009 Apr; 10(5):1950-1966. PubMed ID: 19564931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembly of DNA-based Nanomaterials and Potential Application in Drug Delivery.
    Zhao Z; Liang F; Liu S
    Curr Top Med Chem; 2017; 17(16):1829-1842. PubMed ID: 27875975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unique temperature-dependent supramolecular self-assembly: from hierarchical 1D nanostructures to super hydrogel.
    Qiao Y; Lin Y; Yang Z; Chen H; Zhang S; Yan Y; Huang J
    J Phys Chem B; 2010 Sep; 114(36):11725-30. PubMed ID: 20722403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supramolecular Interactions and Morphology of Self-Assembling Peptide Amphiphile Nanostructures.
    Sangji MH; Sai H; Chin SM; Lee SR; R Sasselli I; Palmer LC; Stupp SI
    Nano Lett; 2021 Jul; 21(14):6146-6155. PubMed ID: 34259001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physics and engineering of peptide supramolecular nanostructures.
    Handelman A; Beker P; Amdursky N; Rosenman G
    Phys Chem Chem Phys; 2012 May; 14(18):6391-408. PubMed ID: 22460950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.