These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3126822)

  • 21. A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1.
    Dahlgren A; Rydén-Aulin M
    Biochimie; 2000 Aug; 82(8):683-91. PubMed ID: 11018284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Termination of translation in bacteria may be modulated via specific interaction between peptide chain release factor 2 and the last peptidyl-tRNA(Ser/Phe).
    Arkov AL; Korolev SV; Kisselev LL
    Nucleic Acids Res; 1993 Jun; 21(12):2891-7. PubMed ID: 8332498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Common and specific amino acid residues in the prokaryotic polypeptide release factors RF1 and RF2: possible functional implications.
    Oparina NJ; Kalinina OV; Gelfand MS; Kisselev LL
    Nucleic Acids Res; 2005; 33(16):5226-34. PubMed ID: 16162810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the Escherichia coli ribosomal termination complex with release factor 2.
    Klaholz BP; Pape T; Zavialov AV; Myasnikov AG; Orlova EV; Vestergaard B; Ehrenberg M; van Heel M
    Nature; 2003 Jan; 421(6918):90-4. PubMed ID: 12511961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of two classes of release factors from Euplotes octocarinatus.
    Chai BF; Song L; Fu YJ; Wang W; Liang AH
    Yi Chuan Xue Bao; 2004 May; 31(5):460-7. PubMed ID: 15478605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A direct estimation of the context effect on the efficiency of termination.
    Pavlov MY; Freistroffer DV; Dincbas V; MacDougall J; Buckingham RH; Ehrenberg M
    J Mol Biol; 1998 Dec; 284(3):579-90. PubMed ID: 9826500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple conversion between the genes encoding bacterial class-I release factors.
    Ishikawa SA; Kamikawa R; Inagaki Y
    Sci Rep; 2015 Aug; 5():12406. PubMed ID: 26257102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping functionally important motifs SPF and GGQ of the decoding release factor RF2 to the Escherichia coli ribosome by hydroxyl radical footprinting. Implications for macromolecular mimicry and structural changes in RF2.
    Scarlett DJ; McCaughan KK; Wilson DN; Tate WP
    J Biol Chem; 2003 Apr; 278(17):15095-104. PubMed ID: 12458201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1996 Aug; 261(2):98-107. PubMed ID: 8757279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic insights into the alternative translation termination by ArfA and RF2.
    Ma C; Kurita D; Li N; Chen Y; Himeno H; Gao N
    Nature; 2017 Jan; 541(7638):550-553. PubMed ID: 27906160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1.
    Vestergaard B; Van LB; Andersen GR; Nyborg J; Buckingham RH; Kjeldgaard M
    Mol Cell; 2001 Dec; 8(6):1375-82. PubMed ID: 11779511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals.
    Poole ES; Major LL; Mannering SA; Tate WP
    Nucleic Acids Res; 1998 Feb; 26(4):954-60. PubMed ID: 9461453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional specificity of amino acid at position 246 in the tRNA mimicry domain of bacterial release factor 2.
    Uno M; Ito K; Nakamura Y
    Biochimie; 1996; 78(11-12):935-43. PubMed ID: 9150870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Release factor one is nonessential in Escherichia coli.
    Johnson DB; Wang C; Xu J; Schultz MD; Schmitz RJ; Ecker JR; Wang L
    ACS Chem Biol; 2012 Aug; 7(8):1337-44. PubMed ID: 22662873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1.
    Kipper K; Sild S; Hetényi C; Remme J; Liiv A
    Biochimie; 2011 May; 93(5):834-44. PubMed ID: 21281690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites.
    Johnson DB; Xu J; Shen Z; Takimoto JK; Schultz MD; Schmitz RJ; Xiang Z; Ecker JR; Briggs SP; Wang L
    Nat Chem Biol; 2011 Sep; 7(11):779-86. PubMed ID: 21926996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner.
    Freistroffer DV; Pavlov MY; MacDougall J; Buckingham RH; Ehrenberg M
    EMBO J; 1997 Jul; 16(13):4126-33. PubMed ID: 9233821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of ribosomes and release factors during translation termination in
    Adio S; Sharma H; Senyushkina T; Karki P; Maracci C; Wohlgemuth I; Holtkamp W; Peske F; Rodnina MV
    Elife; 2018 Jun; 7():. PubMed ID: 29889659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular recognition and catalysis in translation termination complexes.
    Klaholz BP
    Trends Biochem Sci; 2011 May; 36(5):282-92. PubMed ID: 21420300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA.
    Adamski FM; Donly BC; Tate WP
    Nucleic Acids Res; 1993 Nov; 21(22):5074-8. PubMed ID: 7504811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.