BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31268303)

  • 1. Cell-Type-Specific CRISPR Activation with MicroRNA-Responsive AcrllA4 Switch.
    Hirosawa M; Fujita Y; Saito H
    ACS Synth Biol; 2019 Jul; 8(7):1575-1582. PubMed ID: 31268303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch.
    Hirosawa M; Fujita Y; Parr CJC; Hayashi K; Kashida S; Hotta A; Woltjen K; Saito H
    Nucleic Acids Res; 2017 Jul; 45(13):e118. PubMed ID: 28525578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins.
    Hoffmann MD; Aschenbrenner S; Grosse S; Rapti K; Domenger C; Fakhiri J; Mastel M; Börner K; Eils R; Grimm D; Niopek D
    Nucleic Acids Res; 2019 Jul; 47(13):e75. PubMed ID: 30982889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Mediated Transcriptional Repression in Toxoplasma gondii.
    Markus BM; Boydston EA; Lourido S
    mSphere; 2021 Oct; 6(5):e0047421. PubMed ID: 34643425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise Regulation of Cas9-Mediated Genome Engineering by Anti-CRISPR-Based Inducible CRISPR Controllers.
    Jain S; Xun G; Abesteh S; Ho S; Lingamaneni M; Martin TA; Tasan I; Yang C; Zhao H
    ACS Synth Biol; 2021 Jun; 10(6):1320-1327. PubMed ID: 34006094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroporation-Based CRISPR/Cas9 Gene Editing Using Cas9 Protein and Chemically Modified sgRNAs.
    Laustsen A; Bak RO
    Methods Mol Biol; 2019; 1961():127-134. PubMed ID: 30912044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9.
    Barkau CL; O'Reilly D; Rohilla KJ; Damha MJ; Gagnon KT
    Nucleic Acid Ther; 2019 Jun; 29(3):136-147. PubMed ID: 30990769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for Measuring CRISPR/Cas9 DNA Cleavage in Cells.
    Cromwell CR; Jovel J; Hubbard BP
    Methods Mol Biol; 2021; 2162():197-213. PubMed ID: 32926384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.
    Kundert K; Lucas JE; Watters KE; Fellmann C; Ng AH; Heineike BM; Fitzsimmons CM; Oakes BL; Qu J; Prasad N; Rosenberg OS; Savage DF; El-Samad H; Doudna JA; Kortemme T
    Nat Commun; 2019 May; 10(1):2127. PubMed ID: 31073154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1.
    Kweon J; Jang AH; Kim DE; Yang JW; Yoon M; Rim Shin H; Kim JS; Kim Y
    Nat Commun; 2017 Nov; 8(1):1723. PubMed ID: 29167440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of anti-CRISPR proteins with improved inhibition potency.
    Mathony J; Harteveld Z; Schmelas C; Upmeier Zu Belzen J; Aschenbrenner S; Sun W; Hoffmann MD; Stengl C; Scheck A; Georgeon S; Rosset S; Wang Y; Grimm D; Eils R; Correia BE; Niopek D
    Nat Chem Biol; 2020 Jul; 16(7):725-730. PubMed ID: 32284602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-responsive release of Cas9/sgRNA from DNA nanoflower for cytosolic protein delivery and enhanced genome editing.
    Shi J; Yang X; Li Y; Wang D; Liu W; Zhang Z; Liu J; Zhang K
    Biomaterials; 2020 Oct; 256():120221. PubMed ID: 32738651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNAzyme activated protein-scaffolded CRISPR-Cas9 nanoassembly for genome editing.
    Zhu X; Lv MM; Liu JW; Yu RQ; Jiang JH
    Chem Commun (Camb); 2019 Jun; 55(46):6511-6514. PubMed ID: 31099367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrogation of Functional miRNA-Target Interactions by CRISPR/Cas9 Genome Engineering.
    Michaels YS; Wu Q; Fulga TA
    Methods Mol Biol; 2017; 1580():79-97. PubMed ID: 28439828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Allosteric Conditional Guide RNAs for Mammalian Cell-Selective Regulation of CRISPR/Cas.
    Hochrein LM; Li H; Pierce NA
    ACS Synth Biol; 2021 May; 10(5):964-971. PubMed ID: 33930275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.
    Pham H; Kearns NA; Maehr R
    Methods Mol Biol; 2016; 1358():43-57. PubMed ID: 26463376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific Gene Silencing in Leptospira biflexa by RNA-Guided Catalytically Inactive Cas9 (dCas9).
    Fernandes LGV; Nascimento ALTO
    Methods Mol Biol; 2020; 2134():109-122. PubMed ID: 32632863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.