These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31268305)

  • 1. Gene Expression in on-Chip Membrane-Bound Artificial Cells.
    Izri Z; Garenne D; Noireaux V; Maeda YT
    ACS Synth Biol; 2019 Aug; 8(8):1705-1712. PubMed ID: 31268305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TXTL-based approach to synthetic cells.
    Garamella J; Garenne D; Noireaux V
    Methods Enzymol; 2019; 617():217-239. PubMed ID: 30784403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Biology with an All E. coli TXTL System: Quantitative Characterization of Regulatory Elements and Gene Circuits.
    Marshall R; Noireaux V
    Methods Mol Biol; 2018; 1772():61-93. PubMed ID: 29754223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems.
    Marshall R; Maxwell CS; Collins SP; Beisel CL; Noireaux V
    Biotechnol Bioeng; 2017 Sep; 114(9):2137-2141. PubMed ID: 28475211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription and Translation in Cytomimetic Protocells Perform Most Efficiently at Distinct Macromolecular Crowding Conditions.
    Vibhute MA; Schaap MH; Maas RJM; Nelissen FHT; Spruijt E; Heus HA; Hansen MMK; Huck WTS
    ACS Synth Biol; 2020 Oct; 9(10):2797-2807. PubMed ID: 32976714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building Dynamic Cellular Machineries in Droplet-Based Artificial Cells with Single-Droplet Tracking and Analysis.
    Sun M; Li Z; Wang S; Maryu G; Yang Q
    Anal Chem; 2019 Aug; 91(15):9813-9818. PubMed ID: 31284720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient multi-gene expression in cell-free droplet microreactors.
    Sierra AMR; Arold ST; Grünberg R
    PLoS One; 2022; 17(3):e0260420. PubMed ID: 35312702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the all-E. coli transcription-translation system myTXTL by mass spectrometry.
    Garenne D; Beisel CL; Noireaux V
    Rapid Commun Mass Spectrom; 2019 May; 33(11):1036-1048. PubMed ID: 30900355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable On-Chip Artificial Cell Producing Post-Translationally Modified Ubiquitinated Protein.
    Zilberzwige-Tal S; Levin A; Toprakcioglu Z; Knowles TPJ; Gazit E; Elbaz J
    Small; 2019 Aug; 15(31):e1901780. PubMed ID: 31207024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking genotype and phenotype in protein synthesizing liposomes with external supply of resources.
    Nourian Z; Danelon C
    ACS Synth Biol; 2013 Apr; 2(4):186-93. PubMed ID: 23656477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet microfluidics for the construction of compartmentalised model membranes.
    Trantidou T; Friddin MS; Salehi-Reyhani A; Ces O; Elani Y
    Lab Chip; 2018 Aug; 18(17):2488-2509. PubMed ID: 30066008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative modeling of transcription and translation of an all-E. coli cell-free system.
    Marshall R; Noireaux V
    Sci Rep; 2019 Aug; 9(1):11980. PubMed ID: 31427623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal control of coacervate formation within liposomes.
    Deshpande S; Brandenburg F; Lau A; Last MGF; Spoelstra WK; Reese L; Wunnava S; Dogterom M; Dekker C
    Nat Commun; 2019 Apr; 10(1):1800. PubMed ID: 30996302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Scaling Up of Microchemical Systems: A Review.
    Zhang J; Wang K; Teixeira AR; Jensen KF; Luo G
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():285-305. PubMed ID: 28375772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription-translation of the
    Deyama T; Matsui Y; Chadani Y; Sekine Y; Doi N; Fujiwara K
    Chem Commun (Camb); 2021 Oct; 57(80):10367-10370. PubMed ID: 34541593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices.
    Ayoubi-Joshaghani MH; Dianat-Moghadam H; Seidi K; Jahanban-Esfahalan A; Zare P; Jahanban-Esfahlan R
    Biotechnol Bioeng; 2020 Apr; 117(4):1204-1229. PubMed ID: 31840797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways.
    Elani Y; Law RV; Ces O
    Nat Commun; 2014 Oct; 5():5305. PubMed ID: 25351716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochasticity in gene expression in a cell-sized compartment.
    Nishimura K; Tsuru S; Suzuki H; Yomo T
    ACS Synth Biol; 2015 May; 4(5):566-76. PubMed ID: 25280237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip microfluidic production of cell-sized liposomes.
    Deshpande S; Dekker C
    Nat Protoc; 2018 May; 13(5):856-874. PubMed ID: 29599442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gene expression control technology for cell-free systems and synthetic cells via targeted gene silencing and transfection.
    Sato W; Rasmussen M; Gaut N; Devarajan M; Stokes K; Deich C; Engelhart AE; Adamala KP
    Biotechnol Bioeng; 2023 Jul; 120(7):1986-1997. PubMed ID: 37159417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.