These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 31268319)
1. Prospective Life Cycle Assessment of Large-Scale Biochar Production and Use for Negative Emissions in Stockholm. Azzi ES; Karltun E; Sundberg C Environ Sci Technol; 2019 Jul; 53(14):8466-8476. PubMed ID: 31268319 [TBL] [Abstract][Full Text] [Related]
2. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Peters JF; Iribarren D; Dufour J Environ Sci Technol; 2015 Apr; 49(8):5195-202. PubMed ID: 25830564 [TBL] [Abstract][Full Text] [Related]
3. Biochar potentially mitigates greenhouse gas emissions from cultivation of oilseed rape for biodiesel. Thers H; Djomo SN; Elsgaard L; Knudsen MT Sci Total Environ; 2019 Jun; 671():180-188. PubMed ID: 30928748 [TBL] [Abstract][Full Text] [Related]
4. Feedstock particle size and pyrolysis temperature regulate effects of biochar on soil nitrous oxide and carbon dioxide emissions. Deng B; Yuan X; Siemann E; Wang S; Fang H; Wang B; Gao Y; Shad N; Liu X; Zhang W; Guo X; Zhang L Waste Manag; 2021 Feb; 120():33-40. PubMed ID: 33279825 [TBL] [Abstract][Full Text] [Related]
5. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application. Bamminger C; Poll C; Marhan S Glob Chang Biol; 2018 Jan; 24(1):e318-e334. PubMed ID: 28816416 [TBL] [Abstract][Full Text] [Related]
6. Biochar from agricultural wastes: Environmental sustainability, economic viability and the potential as a negative emissions technology in Malaysia. Saharudin DM; Jeswani HK; Azapagic A Sci Total Environ; 2024 Apr; 919():170266. PubMed ID: 38253094 [TBL] [Abstract][Full Text] [Related]
7. Soil carbon sequestration and biochar as negative emission technologies. Smith P Glob Chang Biol; 2016 Mar; 22(3):1315-24. PubMed ID: 26732128 [TBL] [Abstract][Full Text] [Related]
8. Albedo impact on the suitability of biochar systems to mitigate global warming. Meyer S; Bright RM; Fischer D; Schulz H; Glaser B Environ Sci Technol; 2012 Nov; 46(22):12726-34. PubMed ID: 23146092 [TBL] [Abstract][Full Text] [Related]
9. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type. Subedi R; Taupe N; Pelissetti S; Petruzzelli L; Bertora C; Leahy JJ; Grignani C J Environ Manage; 2016 Jan; 166():73-83. PubMed ID: 26484602 [TBL] [Abstract][Full Text] [Related]
10. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368 [TBL] [Abstract][Full Text] [Related]
11. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. Brassard P; Godbout S; Raghavan V J Environ Manage; 2016 Oct; 181():484-497. PubMed ID: 27420171 [TBL] [Abstract][Full Text] [Related]
12. Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions. Augustenborg CA; Hepp S; Kammann C; Hagan D; Schmidt O; Müller C J Environ Qual; 2012; 41(4):1203-9. PubMed ID: 22751063 [TBL] [Abstract][Full Text] [Related]
13. Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts. Papageorgiou A; Azzi ES; Enell A; Sundberg C Sci Total Environ; 2021 Jul; 776():145953. PubMed ID: 33636507 [TBL] [Abstract][Full Text] [Related]
14. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Gaunt JL; Lehmann J Environ Sci Technol; 2008 Jun; 42(11):4152-8. PubMed ID: 18589980 [TBL] [Abstract][Full Text] [Related]
15. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production. Pujol Pereira EI; Suddick EC; Six J PLoS One; 2016; 11(3):e0150837. PubMed ID: 26963623 [TBL] [Abstract][Full Text] [Related]
16. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Spokas KA; Koskinen WC; Baker JM; Reicosky DC Chemosphere; 2009 Oct; 77(4):574-81. PubMed ID: 19647284 [TBL] [Abstract][Full Text] [Related]
17. Sustainable biochar to mitigate global climate change. Woolf D; Amonette JE; Street-Perrott FA; Lehmann J; Joseph S Nat Commun; 2010 Aug; 1():56. PubMed ID: 20975722 [TBL] [Abstract][Full Text] [Related]
18. Effects of biochar and dicyandiamide combination on nitrous oxide emissions from Camellia oleifera field soil. Deng BL; Wang SL; Xu XT; Wang H; Hu DN; Guo XM; Shi QH; Siemann E; Zhang L Environ Sci Pollut Res Int; 2019 Feb; 26(4):4070-4077. PubMed ID: 30554317 [TBL] [Abstract][Full Text] [Related]
19. Biophysical potential of crop residues for biochar carbon sequestration, and co-benefits, in Uganda. Roobroeck D; Hood-Nowotny R; Nakubulwa D; Tumuhairwe JB; Mwanjalolo MJG; Ndawula I; Vanlauwe B Ecol Appl; 2019 Dec; 29(8):e01984. PubMed ID: 31351025 [TBL] [Abstract][Full Text] [Related]
20. Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations. Leng L; Xu X; Wei L; Fan L; Huang H; Li J; Lu Q; Li J; Zhou W Sci Total Environ; 2019 May; 664():11-23. PubMed ID: 30738273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]