BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 31268368)

  • 1. A review of computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).
    Bengtson SH; Bak T; Andreasen Struijk LNS; Moeslund TB
    Disabil Rehabil Assist Technol; 2020 Oct; 15(7):731-745. PubMed ID: 31268368
    [No Abstract]   [Full Text] [Related]  

  • 2. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.
    Ka HW; Chung CS; Ding D; James K; Cooper R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Vision-Guided Shared-Control System for Assistive Robotic Manipulators.
    Ding D; Styler B; Chung CS; Houriet A
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Artificial Intelligence Techniques to Assist Individuals with Physical Disabilities.
    Pancholi S; Wachs JP; Duerstock BS
    Annu Rev Biomed Eng; 2024 Jul; 26(1):1-24. PubMed ID: 37832939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice Control Interface Prototype for Assistive Robots for People Living with Upper Limb Disabilities.
    Poirier S; Routhier F; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():46-52. PubMed ID: 31374605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of assistive robotics in the lives of persons with disability.
    Brose SW; Weber DJ; Salatin BA; Grindle GG; Wang H; Vazquez JJ; Cooper RA
    Am J Phys Med Rehabil; 2010 Jun; 89(6):509-21. PubMed ID: 20134305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs).
    Catalán JM; Trigili E; Nann M; Blanco-Ivorra A; Lauretti C; Cordella F; Ivorra E; Armstrong E; Crea S; Alcañiz M; Zollo L; Soekadar SR; Vitiello N; García-Aracil N
    J Neuroeng Rehabil; 2023 May; 20(1):61. PubMed ID: 37149621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review.
    Nocentini O; Kim J; Bashir ZM; Cavallo F
    J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Evaluation of a Mobile Touchscreen Interface for Assistive Robotic Manipulators: A Pilot Study.
    Chung CS; Ka HW; Wang H; Ding D; Kelleher A; Cooper RA
    Top Spinal Cord Inj Rehabil; 2017; 23(2):131-139. PubMed ID: 29339889
    [No Abstract]   [Full Text] [Related]  

  • 11. Recent trends in the development and evaluation of assistive robotic manipulation devices.
    Allin S; Eckel E; Markham H; Brewer BR
    Phys Med Rehabil Clin N Am; 2010 Feb; 21(1):59-77. PubMed ID: 19951778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rethinking Autonomous Surgery: Focusing on Enhancement over Autonomy.
    Battaglia E; Boehm J; Zheng Y; Jamieson AR; Gahan J; Majewicz Fey A
    Eur Urol Focus; 2021 Jul; 7(4):696-705. PubMed ID: 34246619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using workspace restrictiveness for adaptive velocity adjustment of assistive robots and upper limb exoskeletons.
    Mohammadi M; Cardoso ASS; Andreasen Struijk LNS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye-gaze control of a wheelchair mounted 6DOF assistive robot for activities of daily living.
    Sunny MSH; Zarif MII; Rulik I; Sanjuan J; Rahman MH; Ahamed SI; Wang I; Schultz K; Brahmi B
    J Neuroeng Rehabil; 2021 Dec; 18(1):173. PubMed ID: 34922590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Autonomous Tongue Control of an Assistive Robotic Arm for Individuals with Quadriplegia.
    Hildebrand M; Bonde F; Kobborg RVN; Andersen C; Norman AF; Thogersen M; Bengtson SH; Dosen S; Struijk NSLA
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():157-162. PubMed ID: 31374623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities.
    Chung CS; Wang H; Cooper RA
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650378. PubMed ID: 24187197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional assessment and performance evaluation for assistive robotic manipulators: Literature review.
    Chung CS; Wang H; Cooper RA
    J Spinal Cord Med; 2013 Jul; 36(4):273-89. PubMed ID: 23820143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of robotic arm use on individuals with upper extremity disabilities: A scoping review.
    Beaudoin M; Lettre J; Routhier F; Archambault PS; Lemay M; Gélinas I
    Can J Occup Ther; 2018 Dec; 85(5):397-407. PubMed ID: 30866682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proof of Concept of an Assistive Robotic Arm Control Using Artificial Stereovision and Eye-Tracking.
    Cio YL; Raison M; Leblond Menard C; Achiche S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2344-2352. PubMed ID: 31675337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assistive Robots for Patients With Amyotrophic Lateral Sclerosis: Exploratory Task-Based Evaluation Study With an Early-Stage Demonstrator.
    Klebbe R; Scherzinger S; Eicher C
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e35304. PubMed ID: 35998031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.