These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31268601)

  • 1. Genome-scale, single-cell-type resolution of microRNA activities within a whole plant organ.
    Brosnan CA; Sarazin A; Lim P; Bologna NG; Hirsch-Hoffmann M; Voinnet O
    EMBO J; 2019 Jul; 38(13):e100754. PubMed ID: 31268601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic HYL1 modulates miRNA-mediated translational repression.
    Yang X; Dong W; Ren W; Zhao Q; Wu F; He Y
    Plant Cell; 2021 Jul; 33(6):1980-1996. PubMed ID: 33764452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-Dependent AGO1-Mediated Inhibition of the miRNA165/166 Pathway Modulates Stem Cell Maintenance in
    Du F; Gong W; Boscá S; Tucker M; Vaucheret H; Laux T
    Plant Commun; 2020 Jan; 1(1):100002. PubMed ID: 33404539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism.
    Qin J; Tang Z; Ma X; Meng Y
    Gene; 2017 Sep; 628():180-189. PubMed ID: 28698160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development.
    Vaucheret H; Vazquez F; Crété P; Bartel DP
    Genes Dev; 2004 May; 18(10):1187-97. PubMed ID: 15131082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant microRNAs display differential 3' truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species.
    Zhai J; Zhao Y; Simon SA; Huang S; Petsch K; Arikit S; Pillay M; Ji L; Xie M; Cao X; Yu B; Timmermans M; Yang B; Chen X; Meyers BC
    Plant Cell; 2013 Jul; 25(7):2417-28. PubMed ID: 23839787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive profiling in
    Marchais A; Chevalier C; Voinnet O
    RNA; 2019 Sep; 25(9):1098-1117. PubMed ID: 31138671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mRNA Decay of Most Arabidopsis miRNA Targets Requires Slicer Activity of AGO1.
    Arribas-Hernández L; Kielpinski LJ; Brodersen P
    Plant Physiol; 2016 Aug; 171(4):2620-32. PubMed ID: 27208258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development.
    Zhu H; Hu F; Wang R; Zhou X; Sze SH; Liou LW; Barefoot A; Dickman M; Zhang X
    Cell; 2011 Apr; 145(2):242-56. PubMed ID: 21496644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Argonautes compete for miR165/166 to regulate shoot apical meristem development.
    Zhang Z; Zhang X
    Curr Opin Plant Biol; 2012 Dec; 15(6):652-8. PubMed ID: 22727764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions.
    Wang H; Zhang X; Liu J; Kiba T; Woo J; Ojo T; Hafner M; Tuschl T; Chua NH; Wang XJ
    Plant J; 2011 Jul; 67(2):292-304. PubMed ID: 21457371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that XRN4, an Arabidopsis homolog of exoribonuclease XRN1, preferentially impacts transcripts with certain sequences or in particular functional categories.
    Rymarquis LA; Souret FF; Green PJ
    RNA; 2011 Mar; 17(3):501-11. PubMed ID: 21224377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The miRNome function transitions from regulating developmental genes to transposable elements during pollen maturation.
    Oliver C; Annacondia ML; Wang Z; Jullien PE; Slotkin RK; Köhler C; Martinez G
    Plant Cell; 2022 Feb; 34(2):784-801. PubMed ID: 34755870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants.
    Carbonell A; Fahlgren N; Garcia-Ruiz H; Gilbert KB; Montgomery TA; Nguyen T; Cuperus JT; Carrington JC
    Plant Cell; 2012 Sep; 24(9):3613-29. PubMed ID: 23023169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRANSPORTIN1 Promotes the Association of MicroRNA with ARGONAUTE1 in Arabidopsis.
    Cui Y; Fang X; Qi Y
    Plant Cell; 2016 Oct; 28(10):2576-2585. PubMed ID: 27662897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms that impact microRNA stability in plants.
    Zhao Y; Mo B; Chen X
    RNA Biol; 2012 Oct; 9(10):1218-23. PubMed ID: 22995833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1.
    Kidner CA; Martienssen RA
    Nature; 2004 Mar; 428(6978):81-4. PubMed ID: 14999284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Flexibility Enables Alternative Maturation, ARGONAUTE Sorting and Activities of miR168, a Global Gene Silencing Regulator in Plants.
    Iki T; Cléry A; Bologna NG; Sarazin A; Brosnan CA; Pumplin N; Allain FHT; Voinnet O
    Mol Plant; 2018 Aug; 11(8):1008-1023. PubMed ID: 29803952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An importin β protein negatively regulates MicroRNA activity in Arabidopsis.
    Wang W; Ye R; Xin Y; Fang X; Li C; Shi H; Zhou X; Qi Y
    Plant Cell; 2011 Oct; 23(10):3565-76. PubMed ID: 21984696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.