These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31268697)

  • 1. Biodiversity Improves Life Cycle Sustainability Metrics in Algal Biofuel Production.
    Carruthers DN; Godwin CM; Hietala DC; Cardinale BJ; Lin XN; Savage PE
    Environ Sci Technol; 2019 Aug; 53(15):9279-9288. PubMed ID: 31268697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecological Stoichiometry Meets Ecological Engineering: Using Polycultures to Enhance the Multifunctionality of Algal Biocrude Systems.
    Godwin CM; Hietala DC; Lashaway AR; Narwani A; Savage PE; Cardinale BJ
    Environ Sci Technol; 2017 Oct; 51(19):11450-11458. PubMed ID: 28825799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algal polycultures enhance coproduct recycling from hydrothermal liquefaction.
    Godwin CM; Hietala DC; Lashaway AR; Narwani A; Savage PE; Cardinale BJ
    Bioresour Technol; 2017 Jan; 224():630-638. PubMed ID: 27923610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity in Nitrogen Sources Enhances Productivity and Nutrient Use Efficiency in Algal Polycultures.
    Mandal S; Shurin JB; Efroymson RA; Mathews TJ
    Environ Sci Technol; 2018 Mar; 52(6):3769-3776. PubMed ID: 29466661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological Engineering Helps Maximize Function in Algal Oil Production.
    Jackrel SL; Narwani A; Bentlage B; Levine RB; Hietala DC; Savage PE; Oakley TH; Denef VJ; Cardinale BJ
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29776927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiversity and disease risk in an algal biofuel system: An experimental test in outdoor ponds using a before-after-control-impact (BACI) design.
    Widin SL; Billings KM; McGowen J; Cardinale BJ
    PLoS One; 2022; 17(4):e0267674. PubMed ID: 35482813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of Fungal Disease on Algal Biofuel Systems: Using Life Cycle Assessment to Compare Control Strategies.
    Miyasato EM; Cardinale BJ
    Environ Sci Technol; 2023 Feb; 57(6):2602-2610. PubMed ID: 36734469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle environmental impacts of wastewater-based algal biofuels.
    Mu D; Min M; Krohn B; Mullins KA; Ruan R; Hill J
    Environ Sci Technol; 2014 Oct; 48(19):11696-704. PubMed ID: 25220843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production.
    Mu D; Ruan R; Addy M; Mack S; Chen P; Zhou Y
    Bioresour Technol; 2017 Apr; 230():33-42. PubMed ID: 28157562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.
    Park JB; Craggs RJ; Shilton AN
    Water Res; 2013 Sep; 47(13):4422-32. PubMed ID: 23764593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in engineering algae for biofuel production.
    Ruffing AM; Davis RW; Lane TW
    Curr Opin Biotechnol; 2022 Dec; 78():102830. PubMed ID: 36332347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgal biomass production pathways: evaluation of life cycle environmental impacts.
    Zaimes GG; Khanna V
    Biotechnol Biofuels; 2013 Jun; 6(1):88. PubMed ID: 23786775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation.
    Leong YK; Chen WH; Lee DJ; Chang JS
    J Hazard Mater; 2021 Sep; 418():126278. PubMed ID: 34098259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant-animal diversity relationships in a rocky intertidal system depend on invertebrate body size and algal cover.
    Best RJ; Chaudoin AL; Bracken ME; Graham MH; Stachowicz JJ
    Ecology; 2014 May; 95(5):1308-22. PubMed ID: 25000762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power of Plankton: Effects of Algal Biodiversity on Biocrude Production and Stability.
    Narwani A; Lashaway AR; Hietala DC; Savage PE; Cardinale BJ
    Environ Sci Technol; 2016 Dec; 50(23):13142-13150. PubMed ID: 27934263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.
    Park H; Lee CG
    Biotechnol J; 2016 Nov; 11(11):1461-1470. PubMed ID: 27782372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle greenhouse gas emissions of microalgal fuel from thin-layer cascades.
    Portner BW; Endres CH; Brück T; Garbe D
    Bioprocess Biosyst Eng; 2021 Nov; 44(11):2399-2406. PubMed ID: 34296327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.
    Park JB; Craggs RJ; Shilton AN
    Water Res; 2013 Sep; 47(14):4904-17. PubMed ID: 23866138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of light use efficiency for biofuel production in algae.
    Simionato D; Basso S; Giacometti GM; Morosinotto T
    Biophys Chem; 2013 Dec; 182():71-8. PubMed ID: 23876487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainability and life cycle assessments of lignocellulosic and algal pretreatments.
    Rebello S; Anoopkumar AN; Aneesh EM; Sindhu R; Binod P; Pandey A
    Bioresour Technol; 2020 Apr; 301():122678. PubMed ID: 31982298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.