BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31268771)

  • 41. Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat.
    Ness TJ; Gebhart GF
    Brain Res; 1988 May; 450(1-2):153-69. PubMed ID: 3401708
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oesophageal morphometry and residual strain in a mouse model of osteogenesis imperfecta.
    Gregersen H; Weis SM; McCulloch AD
    Neurogastroenterol Motil; 2001 Oct; 13(5):457-64. PubMed ID: 11696107
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Micromechanically-motivated analysis of fibrous tissue.
    Ben-Or Frank M; Niestrawska JA; Holzapfel GA; deBotton G
    J Mech Behav Biomed Mater; 2019 Aug; 96():69-78. PubMed ID: 31029996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A two-layered mechanical model of the rat esophagus. Experiment and theory.
    Fan Y; Gregersen H; Kassab GS
    Biomed Eng Online; 2004 Nov; 3(1):40. PubMed ID: 15518591
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum.
    Wynn G; Rong W; Xiang Z; Burnstock G
    Gastroenterology; 2003 Nov; 125(5):1398-409. PubMed ID: 14598256
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of homeostatic elastic moduli in two layers of the esophagus.
    Gregersen H; Liao D; Fung YC
    J Biomech Eng; 2008 Feb; 130(1):011005. PubMed ID: 18298181
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Runx1-deficient afferents impair visceral nociception, exacerbating dextran sodium sulfate-induced colitis.
    Hung SP; Sheu MJ; Ma MC; Hu JT; Sun YY; Lee CC; Chung YC; Tsai YJ; Wang JY; Chen CL
    Brain Behav Immun; 2014 Jan; 35():96-106. PubMed ID: 24041578
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The parabrachial area: electrophysiological evidence for an involvement in visceral nociceptive processes.
    Bernard JF; Huang GF; Besson JM
    J Neurophysiol; 1994 May; 71(5):1646-60. PubMed ID: 8064340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morphological, molecular, and functional characterization of mouse glutamatergic myenteric neurons.
    Liu J; Zhang S; Emadi S; Guo T; Chen L; Feng B
    bioRxiv; 2023 Sep; ():. PubMed ID: 37781576
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative immunohistochemical co-localization of TRPV1 and CGRP in varicose axons of the murine oesophagus, stomach and colorectum.
    Sharrad DF; Hibberd TJ; Kyloh MA; Brookes SJ; Spencer NJ
    Neurosci Lett; 2015 Jul; 599():164-71. PubMed ID: 25980991
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Colorectal distension-evoked potentials in awake rats: a novel method for studies of visceral sensitivity.
    Hultin L; Nissen TD; Kakol-Palm D; Lindström E
    Neurogastroenterol Motil; 2012 Oct; 24(10):964-e466. PubMed ID: 22925114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of neuronal responses to noxious visceral and somatic stimuli in the medial lumbosacral spinal cord of the rat.
    Ness TJ; Gebhart GF
    J Neurophysiol; 1987 Jun; 57(6):1867-92. PubMed ID: 3598634
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mas-related G protein-coupled receptor C11 (Mrgprc11) induces visceral hypersensitivity in the mouse colon: A novel target in gut nociception?
    Van Remoortel S; Ceuleers H; Arora R; Van Nassauw L; De Man JG; Buckinx R; De Winter BY; Timmermans JP
    Neurogastroenterol Motil; 2019 Aug; 31(8):e13623. PubMed ID: 31119828
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endogenous neurotensin facilitates visceral nociception and is required for stress-induced antinociception in mice and rats.
    Gui X; Carraway RE; Dobner PR
    Neuroscience; 2004; 126(4):1023-32. PubMed ID: 15207335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat.
    Sengupta JN; Gebhart GF
    J Neurophysiol; 1994 Jun; 71(6):2046-60. PubMed ID: 7931501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel anterograde neuronal tracing technique to selectively label spinal afferent nerve endings that encode noxious and innocuous stimuli in visceral organs.
    Kyloh M; Spencer NJ
    Neurogastroenterol Motil; 2014 Mar; 26(3):440-4. PubMed ID: 24460783
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene.
    Laird JM; Olivar T; Roza C; De Felipe C; Hunt SP; Cervero F
    Neuroscience; 2000; 98(2):345-52. PubMed ID: 10854767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of FAAH, MAGL, and Dual FAAH/MAGL inhibition on inflammatory and colorectal distension-induced visceral pain models in Rodents.
    Sakin YS; Dogrul A; Ilkaya F; Seyrek M; Ulas UH; Gulsen M; Bagci S
    Neurogastroenterol Motil; 2015 Jul; 27(7):936-44. PubMed ID: 25869205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Layer-resolved colorectal tissues using nonlinear microscopy.
    Li L; Li H; Chen Z; Zhuo S; Feng C; Yang Y; Guan G; Chen J
    Lasers Med Sci; 2015 Jul; 30(5):1589-97. PubMed ID: 26003427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of adenoma for colorectal cancer development: differences in the distribution of adenoma with low-grade dysplasia, high-grade dysplasia, and cancer that invades the submucosa.
    Ikeda Y; Mori M; Shibahara K; Iwashita A; Haraguchi Y; Saku M
    Surgery; 2002 Jan; 131(1 Suppl):S105-8. PubMed ID: 11821795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.