BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31268905)

  • 1. Automatic extraction of imaging observation and assessment categories from breast magnetic resonance imaging reports with natural language processing.
    Liu Y; Zhu LN; Liu Q; Han C; Zhang XD; Wang XY
    Chin Med J (Engl); 2019 Jul; 132(14):1673-1680. PubMed ID: 31268905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic classification and prioritisation of actionable BI-RADS categories using natural language processing models.
    López-Úbeda P; Martín-Noguerol T; Luna A
    Clin Radiol; 2024 Jan; 79(1):e1-e7. PubMed ID: 37838546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of natural language processing to post-structuring of rectal cancer MRI reports.
    Liu W; Cai L; Li Y
    Clin Radiol; 2024 Feb; 79(2):e204-e210. PubMed ID: 38042740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural language processing for automatic evaluation of free-text answers - a feasibility study based on the European Diploma in Radiology examination.
    Stoehr F; Kämpgen B; Müller L; Zufiría LO; Junquero V; Merino C; Mildenberger P; Kloeckner R
    Insights Imaging; 2023 Sep; 14(1):150. PubMed ID: 37726485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Natural Language Processing to Automatically Identify Dysplasia in Pathology Reports for Patients With Barrett's Esophagus.
    Nguyen Wenker T; Natarajan Y; Caskey K; Novoa F; Mansour N; Pham HA; Hou JK; El-Serag HB; Thrift AP
    Clin Gastroenterol Hepatol; 2023 May; 21(5):1198-1204. PubMed ID: 36115659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reporting quality of natural language processing studies: systematic review of studies of radiology reports.
    Davidson EM; Poon MTC; Casey A; Grivas A; Duma D; Dong H; Suárez-Paniagua V; Grover C; Tobin R; Whalley H; Wu H; Alex B; Whiteley W
    BMC Med Imaging; 2021 Oct; 21(1):142. PubMed ID: 34600486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using GPT-4 for LI-RADS feature extraction and categorization with multilingual free-text reports.
    Gu K; Lee JH; Shin J; Hwang JA; Min JH; Jeong WK; Lee MW; Song KD; Bae SH
    Liver Int; 2024 Apr; ():. PubMed ID: 38651924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a natural language processing algorithm to extract seizure types and frequencies from the electronic health record.
    Decker BM; Turco A; Xu J; Terman SW; Kosaraju N; Jamil A; Davis KA; Litt B; Ellis CA; Khankhanian P; Hill CE
    Seizure; 2022 Oct; 101():48-51. PubMed ID: 35882104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural language processing algorithms for mapping clinical text fragments onto ontology concepts: a systematic review and recommendations for future studies.
    Kersloot MG; van Putten FJP; Abu-Hanna A; Cornet R; Arts DL
    J Biomed Semantics; 2020 Nov; 11(1):14. PubMed ID: 33198814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural language processing in narrative breast radiology reporting in University Malaya Medical Centre.
    Tan WM; Ng WL; Ganggayah MD; Hoe VCW; Rahmat K; Zaini HS; Mohd Taib NA; Dhillon SK
    Health Informatics J; 2023; 29(3):14604582231203763. PubMed ID: 37740904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using natural language processing to extract structured epilepsy data from unstructured clinic letters: development and validation of the ExECT (extraction of epilepsy clinical text) system.
    Fonferko-Shadrach B; Lacey AS; Roberts A; Akbari A; Thompson S; Ford DV; Lyons RA; Rees MI; Pickrell WO
    BMJ Open; 2019 Apr; 9(4):e023232. PubMed ID: 30940752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of breast lesion descriptors in the ACR BI-RADS MRI lexicon.
    Agrawal G; Su MY; Nalcioglu O; Feig SA; Chen JH
    Cancer; 2009 Apr; 115(7):1363-80. PubMed ID: 19197974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Patients Who Meet Criteria for Genetic Testing of Hereditary Cancers Based on Structured and Unstructured Family Health History Data in the Electronic Health Record: Natural Language Processing Approach.
    Shi J; Morgan KL; Bradshaw RL; Jung SH; Kohlmann W; Kaphingst KA; Kawamoto K; Fiol GD
    JMIR Med Inform; 2022 Aug; 10(8):e37842. PubMed ID: 35969459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of a Model to Identify Critical Brain Injuries Using Natural Language Processing of Text Computed Tomography Reports.
    Torres-Lopez VM; Rovenolt GE; Olcese AJ; Garcia GE; Chacko SM; Robinson A; Gaiser E; Acosta J; Herman AL; Kuohn LR; Leary M; Soto AL; Zhang Q; Fatima S; Falcone GJ; Payabvash MS; Sharma R; Struck AF; Sheth KN; Westover MB; Kim JA
    JAMA Netw Open; 2022 Aug; 5(8):e2227109. PubMed ID: 35972739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automating the Capture of Structured Pathology Data for Prostate Cancer Clinical Care and Research.
    Odisho AY; Bridge M; Webb M; Ameli N; Eapen RS; Stauf F; Cowan JE; Washington SL; Herlemann A; Carroll PR; Cooperberg MR
    JCO Clin Cancer Inform; 2019 Jul; 3():1-8. PubMed ID: 31314550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Language Processing and Graph Theory: Making Sense of Imaging Records in a Novel Representation Frame.
    Binsfeld Gonçalves L; Nesic I; Obradovic M; Stieltjes B; Weikert T; Bremerich J
    JMIR Med Inform; 2022 Dec; 10(12):e40534. PubMed ID: 36542426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Diabetes Related-Complications in a Real-World Free-Text Electronic Medical Records in Hebrew Using Natural Language Processing Techniques.
    Saban M; Lutski M; Zucker I; Uziel M; Ben-Moshe D; Israel A; Vinker S; Golan-Cohen A; Laufer I; Green I; Eldor R; Merzon E
    J Diabetes Sci Technol; 2024 Jan; ():19322968241228555. PubMed ID: 38288672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Evaluation of a Natural Language Processing System for Curating a Trans-Thoracic Echocardiogram (TTE) Database.
    Dong T; Sunderland N; Nightingale A; Fudulu DP; Chan J; Zhai B; Freitas A; Caputo M; Dimagli A; Mires S; Wyatt M; Benedetto U; Angelini GD
    Bioengineering (Basel); 2023 Nov; 10(11):. PubMed ID: 38002431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information Extraction for Clinical Data Mining: A Mammography Case Study.
    Nassif H; Woods R; Burnside E; Ayvaci M; Shavlik J; Page D
    Proc IEEE Int Conf Data Min; 2009; ():37-42. PubMed ID: 23765123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a natural language processing application for measuring the quality of colonoscopy procedures.
    Harkema H; Chapman WW; Saul M; Dellon ES; Schoen RE; Mehrotra A
    J Am Med Inform Assoc; 2011 Dec; 18 Suppl 1(Suppl 1):i150-6. PubMed ID: 21946240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.