These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 31268993)
21. Terrestrial locomotion in the black-billed magpie. I. Spatio-temporal gait characteristics. Verstappen M; Aerts P Motor Control; 2000 Apr; 4(2):150-64. PubMed ID: 11500573 [TBL] [Abstract][Full Text] [Related]
22. Validation of shoe-worn Gait Up Physilog®5 wearable inertial sensors in adolescents. Carroll K; Kennedy RA; Koutoulas V; Bui M; Kraan CM Gait Posture; 2022 Jan; 91():19-25. PubMed ID: 34628218 [TBL] [Abstract][Full Text] [Related]
23. Parametric equations to study and predict lower-limb joint kinematics and kinetics during human walking and slow running on slopes. Shkedy Rabani A; Mizrachi S; Sawicki GS; Riemer R PLoS One; 2022; 17(8):e0269061. PubMed ID: 35925954 [TBL] [Abstract][Full Text] [Related]
24. Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds. Nilsson J; Thorstensson A Acta Physiol Scand; 1987 Jan; 129(1):107-14. PubMed ID: 3565038 [TBL] [Abstract][Full Text] [Related]
25. Selective Breeding and Short-Term Access to a Running Wheel Alter Stride Characteristics in House Mice. Claghorn GC; Thompson Z; Kay JC; Ordonez G; Hampton TG; Garland T Physiol Biochem Zool; 2017; 90(5):533-545. PubMed ID: 28636434 [TBL] [Abstract][Full Text] [Related]
26. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach. Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275 [TBL] [Abstract][Full Text] [Related]
27. Continuous change in spring-mass characteristics during a 400 m sprint. Hobara H; Inoue K; Gomi K; Sakamoto M; Muraoka T; Iso S; Kanosue K J Sci Med Sport; 2010 Mar; 13(2):256-61. PubMed ID: 19342299 [TBL] [Abstract][Full Text] [Related]
28. Energetically optimal stride frequency is maintained with fatigue in trained ultramarathon runners. Vernillo G; Doucende G; Cassirame J; Mourot L J Sci Med Sport; 2019 Sep; 22(9):1054-1058. PubMed ID: 31029549 [TBL] [Abstract][Full Text] [Related]
29. Reliability and validity of pressure and temporal parameters recorded using a pressure-sensitive insole during running. Mann R; Malisoux L; Brunner R; Gette P; Urhausen A; Statham A; Meijer K; Theisen D Gait Posture; 2014; 39(1):455-9. PubMed ID: 24054346 [TBL] [Abstract][Full Text] [Related]
30. [Kinematics and kinetics of sprint acceleration]. Plamondon A; Roy B Can J Appl Sport Sci; 1984 Mar; 9(1):42-52. PubMed ID: 6705128 [TBL] [Abstract][Full Text] [Related]
31. Effect of IMU Design on IMU-Derived Stride Metrics for Running. Potter MV; Ojeda LV; Perkins NC; Cain SM Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181688 [TBL] [Abstract][Full Text] [Related]
32. The head is an excellent proxy for the whole body center of mass when measuring running velocity in competition. Hanley B; Bissas A; Merlino S J Biomech; 2021 May; 121():110399. PubMed ID: 33813216 [TBL] [Abstract][Full Text] [Related]
33. Association of previous injury and speed with running style and stride-to-stride fluctuations. Mann R; Malisoux L; Nührenbörger C; Urhausen A; Meijer K; Theisen D Scand J Med Sci Sports; 2015 Dec; 25(6):e638-45. PubMed ID: 25557130 [TBL] [Abstract][Full Text] [Related]
34. Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models. Zhang H; Guo Y; Zanotto D IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):191-202. PubMed ID: 31831428 [TBL] [Abstract][Full Text] [Related]
35. Years of running experience influences stride-to-stride fluctuations and adaptive response during step frequency perturbations in healthy distance runners. Agresta CE; Goulet GC; Peacock J; Housner J; Zernicke RF; Zendler JD Gait Posture; 2019 May; 70():376-382. PubMed ID: 30959429 [TBL] [Abstract][Full Text] [Related]
36. Increased Contact Time and Strength Deficits in Runners With Exercise-Related Lower Leg Pain. Koldenhoven RM; Virostek A; DeJong AF; Higgins M; Hertel J J Athl Train; 2020 Dec; 55(12):1247-1254. PubMed ID: 33064822 [TBL] [Abstract][Full Text] [Related]
37. Effects of the speed on the webbed foot kinematics of mallard ( Han D; Liu H; Tong Z; Pan J; Wang X PeerJ; 2023; 11():e15362. PubMed ID: 37214106 [TBL] [Abstract][Full Text] [Related]
38. Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. Kobsar D; Charlton JM; Tse CTF; Esculier JF; Graffos A; Krowchuk NM; Thatcher D; Hunt MA J Neuroeng Rehabil; 2020 May; 17(1):62. PubMed ID: 32393301 [TBL] [Abstract][Full Text] [Related]
39. Test-Retest Reliability of Kinematic and Temporal Outcome Measures for Clinical Gait and Stair Walking Tests, Based on Wearable Inertial Sensors. Nilsson S; Ertzgaard P; Lundgren M; Grip H Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161916 [TBL] [Abstract][Full Text] [Related]
40. Validity and test-retest reliability of the Stride Analyzer in people with knee osteoarthritis. Beckwée D; Degelaen M; Eggermont M; Gonzalez-Rodriguez M; Lefeber N; Vaes P; Bautmans I; Swinnen E Gait Posture; 2016 Sep; 49():155-158. PubMed ID: 27423404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]