These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31269235)
1. Numerical simulation of centrifugal and hemodynamically levitated LVAD for performance improvement. Kannojiya V; Das AK; Das PK Artif Organs; 2020 Feb; 44(2):E1-E19. PubMed ID: 31269235 [TBL] [Abstract][Full Text] [Related]
2. Proposal of hemodynamically improved design of an axial flow blood pump for LVAD. Kannojiya V; Das AK; Das PK Med Biol Eng Comput; 2020 Feb; 58(2):401-418. PubMed ID: 31858420 [TBL] [Abstract][Full Text] [Related]
3. Hydraulic and hemodynamic performance of a minimally invasive intra-arterial right ventricular assist device. Hsu PL; Graefe R; Boehning F; Wu C; Parker J; Autschbach R; Schmitz-Rode T; Steinseifer U Int J Artif Organs; 2014 Sep; 37(9):697-705. PubMed ID: 25262631 [TBL] [Abstract][Full Text] [Related]
4. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447 [TBL] [Abstract][Full Text] [Related]
5. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control. Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988 [TBL] [Abstract][Full Text] [Related]
6. Numerical assessment of hemodynamic perspectives of a left ventricular assist device and subsequent proposal for improvisation. Ray PK; Das AK; Das PK Comput Biol Med; 2022 Dec; 151(Pt A):106309. PubMed ID: 36410098 [TBL] [Abstract][Full Text] [Related]
7. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
8. Effect of left ventricular assist device on the hemodynamics of a patient-specific left heart. Kannojiya V; Das AK; Das PK Med Biol Eng Comput; 2022 Jun; 60(6):1705-1721. PubMed ID: 35441317 [TBL] [Abstract][Full Text] [Related]
9. Haemodynamic Effect of Left Atrial and Left Ventricular Cannulation with a Rapid Speed Modulated Rotary Blood Pump During Rest and Exercise: Investigation in a Numerical Cardiorespiratory Model. Wu EL; Fresiello L; Kleinhyer M; Meyns B; Fraser JF; Tansley G; Gregory SD Cardiovasc Eng Technol; 2020 Aug; 11(4):350-361. PubMed ID: 32557185 [TBL] [Abstract][Full Text] [Related]
10. Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate Under Continuous Flow Left Ventricular Assist Device Support. Bozkurt S Artif Organs; 2018 Aug; 42(8):800-813. PubMed ID: 29726017 [TBL] [Abstract][Full Text] [Related]
11. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC; Manning KB Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269 [TBL] [Abstract][Full Text] [Related]
12. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P; Du J; Yu S Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics. Su B; Chua LP; Lim TM; Zhou T Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393 [TBL] [Abstract][Full Text] [Related]
14. Evolving trends in mechanical circulatory support: Clinical development of a fully magnetically levitated durable ventricular assist device. Sidhu K; Lam PH; Mehra MR Trends Cardiovasc Med; 2020 May; 30(4):223-229. PubMed ID: 31201005 [TBL] [Abstract][Full Text] [Related]
15. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device. Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723 [TBL] [Abstract][Full Text] [Related]
16. Modeling of Virtual Mechanical Circulatory Hemodynamics for Biventricular Heart Failure Support. Horvath DW; Polakowski AR; Flick C; Fukamachi K; Horvath DJ; Karimov JH Cardiovasc Eng Technol; 2020 Dec; 11(6):699-707. PubMed ID: 33215365 [TBL] [Abstract][Full Text] [Related]
17. A modeling tool to study the combined effects of drug administration and LVAD assistance in pathophysiological circulatory conditions. Mahmood MN; Fresiello L; Di Molfetta A; Ferrari G Int J Artif Organs; 2014 Nov; 37(11):824-33. PubMed ID: 25450316 [TBL] [Abstract][Full Text] [Related]
18. A Valveless Pulsatile Pump for the Treatment of Heart Failure with Preserved Ejection Fraction: A Simulation Study. Granegger M; Dave H; Knirsch W; Thamsen B; Schweiger M; Hübler M Cardiovasc Eng Technol; 2019 Mar; 10(1):69-79. PubMed ID: 30536212 [TBL] [Abstract][Full Text] [Related]