BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31269503)

  • 1. Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression.
    Cao TN; Joyet P; Aké FMD; Milohanic E; Deutscher J
    J Mol Microbiol Biotechnol; 2019; 29(1-6):10-26. PubMed ID: 31269503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth.
    Stoll R; Goebel W
    Microbiology (Reading); 2010 Apr; 156(Pt 4):1069-1083. PubMed ID: 20056707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction with enzyme IIBMpo (EIIBMpo) and phosphorylation by phosphorylated EIIBMpo exert antagonistic effects on the transcriptional activator ManR of Listeria monocytogenes.
    Zébré AC; Aké FM; Ventroux M; Koffi-Nevry R; Noirot-Gros MF; Deutscher J; Milohanic E
    J Bacteriol; 2015 May; 197(9):1559-72. PubMed ID: 25691525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes.
    Mertins S; Joseph B; Goetz M; Ecke R; Seidel G; Sprehe M; Hillen W; Goebel W; Müller-Altrock S
    J Bacteriol; 2007 Jan; 189(2):473-90. PubMed ID: 17085572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bvr locus of Listeria monocytogenes mediates virulence gene repression by beta-glucosides.
    Brehm K; Ripio MT; Kreft J; Vázquez-Boland JA
    J Bacteriol; 1999 Aug; 181(16):5024-32. PubMed ID: 10438775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-source regulation of virulence gene expression in Listeria monocytogenes.
    Milenbachs AA; Brown DP; Moors M; Youngman P
    Mol Microbiol; 1997 Mar; 23(5):1075-85. PubMed ID: 9076743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media.
    Stoll R; Mertins S; Joseph B; Müller-Altrock S; Goebel W
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3856-3876. PubMed ID: 19047753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation of the cellobiose operon of Streptococcus mutans.
    Zeng L; Burne RA
    J Bacteriol; 2009 Apr; 191(7):2153-62. PubMed ID: 19168613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes.
    Aké FM; Joyet P; Deutscher J; Milohanic E
    Mol Microbiol; 2011 Jul; 81(1):274-93. PubMed ID: 21564334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.
    Nie X; Yang B; Zhang L; Gu Y; Yang S; Jiang W; Yang C
    Mol Microbiol; 2016 Apr; 100(2):289-302. PubMed ID: 26691835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of Listeria monocytogenes virulence genes.
    Herro R; Poncet S; Cossart P; Buchrieser C; Gouin E; Glaser P; Deutscher J
    J Mol Microbiol Biotechnol; 2005; 9(3-4):224-34. PubMed ID: 16415595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors.
    Ripio MT; Brehm K; Lara M; Suárez M; Vázquez-Boland JA
    J Bacteriol; 1997 Nov; 179(22):7174-80. PubMed ID: 9371468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of mannose phosphotransferase system permease and virulence gene expression in Listeria monocytogenes by the EII(t)Man transporter.
    Vu-Khac H; Miller KW
    Appl Environ Microbiol; 2009 Nov; 75(21):6671-8. PubMed ID: 19734332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CelR-mediated activation of the cellobiose-utilization gene cluster in Streptococcus pneumoniae.
    Shafeeq S; Kloosterman TG; Kuipers OP
    Microbiology (Reading); 2011 Oct; 157(Pt 10):2854-2861. PubMed ID: 21778207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lactobacillus casei ptsHI47T mutation causes overexpression of a LevR-regulated but RpoN-independent operon encoding a mannose class phosphotransferase system.
    Mazé A; Boël G; Poncet S; Mijakovic I; Le Breton Y; Benachour A; Monedero V; Deutscher J; Hartke A
    J Bacteriol; 2004 Jul; 186(14):4543-55. PubMed ID: 15231787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deregulation of Listeria monocytogenes virulence gene expression by two distinct and semi-independent pathways.
    Milenbachs Lukowiak A; Mueller KJ; Freitag NE; Youngman P
    Microbiology (Reading); 2004 Feb; 150(Pt 2):321-333. PubMed ID: 14766910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycerol metabolism and PrfA activity in Listeria monocytogenes.
    Joseph B; Mertins S; Stoll R; Schär J; Umesha KR; Luo Q; Müller-Altrock S; Goebel W
    J Bacteriol; 2008 Aug; 190(15):5412-30. PubMed ID: 18502850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellobiose-specific phosphotransferase system of Klebsiella pneumoniae and its importance in biofilm formation and virulence.
    Wu MC; Chen YC; Lin TL; Hsieh PF; Wang JT
    Infect Immun; 2012 Jul; 80(7):2464-72. PubMed ID: 22566508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catabolite repression and virulence gene expression in Listeria monocytogenes.
    Gilbreth SE; Benson AK; Hutkins RW
    Curr Microbiol; 2004 Aug; 49(2):95-8. PubMed ID: 15297913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport and Catabolism of Pentitols by Listeria monocytogenes.
    Kentache T; Milohanic E; Cao TN; Mokhtari A; Aké FM; Ma Pham QM; Joyet P; Deutscher J
    J Mol Microbiol Biotechnol; 2016; 26(6):369-380. PubMed ID: 27553222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.