BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31269689)

  • 1. Exploration of Li-Organic Batteries Using Hexaphyrin as an Active Cathode Material.
    Shin JY; Zhang Z; Awaga K; Shinokubo H
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31269689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Octaphyrin(1.0.1.0.1.0.1.0) as an Organic Electrode for Li and Na Rechargeable Batteries.
    Hwang J; Matsumoto K; Hagiwara R; Liu SY; Shin JY
    Small Methods; 2022 Mar; 6(3):e2101181. PubMed ID: 35312229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(exTTF): a novel redox-active polymer as active material for li-organic batteries.
    Häupler B; Burges R; Friebe C; Janoschka T; Schmidt D; Wild A; Schubert US
    Macromol Rapid Commun; 2014 Aug; 35(15):1367-71. PubMed ID: 24861014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size effect of lithium peroxide on charging performance of Li-O2 batteries.
    Hu Y; Han X; Cheng F; Zhao Q; Hu Z; Chen J
    Nanoscale; 2014 Jan; 6(1):177-80. PubMed ID: 24219997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.
    Patel SN; Javier AE; Balsara NP
    ACS Nano; 2013 Jul; 7(7):6056-68. PubMed ID: 23789816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.
    Yoo E; Zhou H
    ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries.
    Zeng S; Li L; Xie L; Zhao D; Wang N; Chen S
    ChemSusChem; 2017 Sep; 10(17):3378-3386. PubMed ID: 28736985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries.
    Liao K; Zhang T; Wang Y; Li F; Jian Z; Yu H; Zhou H
    ChemSusChem; 2015 Apr; 8(8):1429-34. PubMed ID: 25809196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rechargeable quasi-solid state lithium battery with organic crystalline cathode.
    Hanyu Y; Honma I
    Sci Rep; 2012; 2():453. PubMed ID: 22693655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries.
    Sun T; Li ZJ; Wang HG; Bao D; Meng FL; Zhang XB
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10662-6. PubMed ID: 27485314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.
    Luo JY; Cui WJ; He P; Xia YY
    Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High Voltage Olivine Cathode for Application in Lithium-Ion Batteries.
    Di Lecce D; Brescia R; Scarpellini A; Prato M; Hassoun J
    ChemSusChem; 2016 Jan; 9(2):223-30. PubMed ID: 26694202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithium-Ion Batteries: First-Principles DFT Modeling.
    Park JH; Liu T; Kim KC; Lee SW; Jang SS
    ChemSusChem; 2017 Apr; 10(7):1584-1591. PubMed ID: 28199064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Nitrogen-Doped Graphene/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries.
    Shu C; Li B; Zhang B; Su D
    ChemSusChem; 2015 Dec; 8(23):3973-6. PubMed ID: 26559030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries.
    Yoon KR; Kim DS; Ryu WH; Song SH; Youn DY; Jung JW; Jeon S; Park YJ; Kim ID
    ChemSusChem; 2016 Aug; 9(16):2080-8. PubMed ID: 27453065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO2 (B)/anatase composites synthesized by spray drying as high performance negative electrode material in li-ion batteries.
    Ventosa E; Mei B; Xia W; Muhler M; Schuhmann W
    ChemSusChem; 2013 Aug; 6(8):1312-5. PubMed ID: 23868832
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.