These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31269794)

  • 1. Free Energies of Hydration for Metal Ions from Heats of Vaporization.
    Kepp KP
    J Phys Chem A; 2019 Aug; 123(30):6536-6546. PubMed ID: 31269794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermochemically Consistent Free Energies of Hydration for Di- and Trivalent Metal Ions.
    Kepp KP
    J Phys Chem A; 2018 Sep; 122(37):7464-7471. PubMed ID: 30156111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-Energy Calculations of Ionic Hydration Consistent with the Experimental Hydration Free Energy of the Proton.
    Zhang H; Jiang Y; Yan H; Yin C; Tan T; van der Spoel D
    J Phys Chem Lett; 2017 Jun; 8(12):2705-2712. PubMed ID: 28561580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing phase transitions to quantum chemistry: from Trouton's rule to first principles vaporization entropies.
    Spickermann C; Lehmann SB; Kirchner B
    J Chem Phys; 2008 Jun; 128(24):244506. PubMed ID: 18618941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute hydration entropies of alkali metal ions from molecular dynamics simulations.
    Carlsson J; Aqvist J
    J Phys Chem B; 2009 Jul; 113(30):10255-60. PubMed ID: 19580304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of polarizable continuum models to determine accurate solution-phase thermochemical values across a broad range of cation charge - the case of U(III-VI).
    Parmar P; Samuels A; Clark AE
    J Chem Theory Comput; 2015 Jan; 11(1):55-63. PubMed ID: 26574203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration.
    Hofer TS; Hünenberger PH
    J Chem Phys; 2018 Jun; 148(22):222814. PubMed ID: 29907057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration Free Energy as a Molecular Descriptor in Drug Design: A Feasibility Study.
    Zafar A; Reynisson J
    Mol Inform; 2016 May; 35(5):207-14. PubMed ID: 27492087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents.
    Isse AA; Gennaro A
    J Phys Chem B; 2010 Jun; 114(23):7894-9. PubMed ID: 20496903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Assessment of Computational Methods for Free Energy Calculations of Ionic Hydration.
    Zhang H; Jiang Y; Yan H; Cui Z; Yin C
    J Chem Inf Model; 2017 Nov; 57(11):2763-2775. PubMed ID: 29039666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enthalpies of Formation of Hydrazine and Its Derivatives.
    Dorofeeva OV; Ryzhova ON; Suchkova TA
    J Phys Chem A; 2017 Jul; 121(28):5361-5370. PubMed ID: 28636377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined experimental and theoretical approach to the study of structure and dynamics of the most inert aqua ion [Ir(H2O)6]3+ in aqueous solution.
    Carrera F; Torrico F; Richens DT; Muñoz-Paez A; Martínez JM; Pappalardo RR; Marcos ES
    J Phys Chem B; 2007 Jul; 111(28):8223-33. PubMed ID: 17583938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of Derivative Thermodynamic Hydration and Aqueous Partial Molar Properties of Ions Based on Atomistic Simulations.
    Dahlgren B; Reif MM; Hünenberger PH; Hansen N
    J Chem Theory Comput; 2012 Oct; 8(10):3542-64. PubMed ID: 26593002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment.
    Zhang J; Valeev EF
    J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).
    Hancock RD; Bartolotti LJ
    Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation?
    Gutten O; Beššeová I; Rulíšek L
    J Phys Chem A; 2011 Oct; 115(41):11394-402. PubMed ID: 21888367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The H•/H
    McNeill AS; Zhan CG; Appel AM; Stanbury DM; Dixon DA
    J Phys Chem A; 2020 Jul; 124(29):6084-6095. PubMed ID: 32574051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.