BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31270129)

  • 1. A comparison of the transport kinetics of glycine transporter 1 and glycine transporter 2.
    Erdem FA; Ilic M; Koppensteiner P; Gołacki J; Lubec G; Freissmuth M; Sandtner W
    J Gen Physiol; 2019 Aug; 151(8):1035-1050. PubMed ID: 31270129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An aspartate residue in the external vestibule of GLYT2 (glycine transporter 2) controls cation access and transport coupling.
    Pérez-Siles G; Núñez E; Morreale A; Jiménez E; Leo-Macías A; Pita G; Cherubino F; Sangaletti R; Bossi E; Ortíz AR; Aragón C; López-Corcuera B
    Biochem J; 2012 Mar; 442(2):323-34. PubMed ID: 22132725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurobiology of glycine transporters: From molecules to behavior.
    Marques BL; Oliveira-Lima OC; Carvalho GA; de Almeida Chiarelli R; Ribeiro RI; Parreira RC; da Madeira Freitas EM; Resende RR; Klempin F; Ulrich H; Gomez RS; Pinto MCX
    Neurosci Biobehav Rev; 2020 Nov; 118():97-110. PubMed ID: 32712279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride-dependent conformational changes in the GlyT1 glycine transporter.
    Zhang YW; Uchendu S; Leone V; Bradshaw RT; Sangwa N; Forrest LR; Rudnick G
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33658361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of the differential interaction with lithium of glycine transporters GLYT1 and GLYT2.
    Pérez-Siles G; Morreale A; Leo-Macías A; Pita G; Ortíz AR; Aragón C; López-Corcuera B
    J Neurochem; 2011 Jul; 118(2):195-204. PubMed ID: 21574997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flux coupling, not specificity, shapes the transport and phylogeny of SLC6 glycine transporters.
    Le Guellec B; Rousseau F; Bied M; Supplisson S
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2205874119. PubMed ID: 36191186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2.
    Subramanian N; Scopelitti AJ; Carland JE; Ryan RM; O'Mara ML; Vandenberg RJ
    PLoS One; 2016; 11(6):e0157583. PubMed ID: 27337045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane cholesterol regulates inhibition and substrate transport by the glycine transporter, GlyT2.
    Frangos ZJ; Wilson KA; Aitken HM; Cantwell Chater R; Vandenberg RJ; O'Mara ML
    Life Sci Alliance; 2023 Apr; 6(4):. PubMed ID: 36690444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate-induced conformational changes of extracellular loop 1 in the glycine transporter GLYT2.
    López-Corcuera B; Núñez E; Martínez-Maza R; Geerlings A; Aragón C
    J Biol Chem; 2001 Nov; 276(46):43463-70. PubMed ID: 11551961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane domains 1 and 3 of the glycine transporter GLYT1 contain structural determinants of N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)-propyl]sarcosine specificity.
    Núñez E; Martínez-Maza R; Geerlings A; Aragón C; López-Corcuera B
    Neuropharmacology; 2005 Nov; 49(6):922-34. PubMed ID: 16143353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrogenic Binding of Intracellular Cations Defines a Kinetic Decision Point in the Transport Cycle of the Human Serotonin Transporter.
    Hasenhuetl PS; Freissmuth M; Sandtner W
    J Biol Chem; 2016 Dec; 291(50):25864-25876. PubMed ID: 27756841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of a Putative Third Sodium Site in the Glycine Transporter GlyT2 Influences the Chloride Dependence of Substrate Transport.
    Benito-Muñoz C; Perona A; Abia D; Dos Santos HG; Núñez E; Aragón C; López-Corcuera B
    Front Mol Neurosci; 2018; 11():347. PubMed ID: 30319354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycine transporters GlyT1 and GlyT2 are differentially modulated by glycogen synthase kinase 3β.
    Jiménez E; Núñez E; Ibáñez I; Zafra F; Aragón C; Giménez C
    Neuropharmacology; 2015 Feb; 89():245-54. PubMed ID: 25301276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bergmann glial GlyT1 mediates glycine uptake and release in mouse cerebellar slices.
    Huang H; Barakat L; Wang D; Bordey A
    J Physiol; 2004 Nov; 560(Pt 3):721-36. PubMed ID: 15331688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine transporters: essential regulators of synaptic transmission.
    Betz H; Gomeza J; Armsen W; Scholze P; Eulenburg V
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):55-8. PubMed ID: 16417482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model.
    Hilgemann DW; Lu CC
    J Gen Physiol; 1999 Sep; 114(3):459-75. PubMed ID: 10469735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Determinants for Substrate Interactions with the Glycine Transporter GlyT2.
    Carland JE; Thomas M; Mostyn SN; Subramanian N; O'Mara ML; Ryan RM; Vandenberg RJ
    ACS Chem Neurosci; 2018 Mar; 9(3):603-614. PubMed ID: 29120604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional expression of release-regulating glycine transporters GLYT1 on GABAergic neurons and GLYT2 on astrocytes in mouse spinal cord.
    Raiteri L; Stigliani S; Usai C; Diaspro A; Paluzzi S; Milanese M; Raiteri M; Bonanno G
    Neurochem Int; 2008 Jan; 52(1-2):103-12. PubMed ID: 17597258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GAT1 (GABA:Na+:Cl-) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches.
    Lu CC; Hilgemann DW
    J Gen Physiol; 1999 Sep; 114(3):429-44. PubMed ID: 10469733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAT1 (GABA:Na+:Cl-) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches.
    Lu CC; Hilgemann DW
    J Gen Physiol; 1999 Sep; 114(3):445-57. PubMed ID: 10469734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.