These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31270313)
1. Tuning charge transport dynamics via clustering of doping in organic semiconductor thin films. Boyle CJ; Upadhyaya M; Wang P; Renna LA; Lu-Díaz M; Pyo Jeong S; Hight-Huf N; Korugic-Karasz L; Barnes MD; Aksamija Z; Venkataraman D Nat Commun; 2019 Jul; 10(1):2827. PubMed ID: 31270313 [TBL] [Abstract][Full Text] [Related]
2. Chemical Doping of Organic and Coordination Polymers for Thermoelectric and Spintronic Applications: A Theoretical Understanding. Wang D; Yu H; Shi W; Xu C Acc Chem Res; 2023 Aug; 56(16):2127-2138. PubMed ID: 37432731 [TBL] [Abstract][Full Text] [Related]
3. High Efficiency Doping of Conjugated Polymer for Investigation of Intercorrelation of Thermoelectric Effects with Electrical and Morphological Properties. Yoon SE; Kang Y; Noh SY; Park J; Lee SY; Park J; Lee DW; Whang DR; Kim T; Kim GH; Seo H; Kim BG; Kim JH ACS Appl Mater Interfaces; 2020 Jan; 12(1):1151-1158. PubMed ID: 31808674 [TBL] [Abstract][Full Text] [Related]
4. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics. Kiefer D; Yu L; Fransson E; Gómez A; Primetzhofer D; Amassian A; Campoy-Quiles M; Müller C Adv Sci (Weinh); 2017 Jan; 4(1):1600203. PubMed ID: 28105396 [TBL] [Abstract][Full Text] [Related]
5. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants. Lu Y; Wang JY; Pei J Acc Chem Res; 2021 Jul; 54(13):2871-2883. PubMed ID: 34152131 [TBL] [Abstract][Full Text] [Related]
6. Unravelling Doping Effects on PEDOT at the Molecular Level: From Geometry to Thermoelectric Transport Properties. Shi W; Zhao T; Xi J; Wang D; Shuai Z J Am Chem Soc; 2015 Oct; 137(40):12929-38. PubMed ID: 26406937 [TBL] [Abstract][Full Text] [Related]
7. Iron(III) Dopant Counterions Affect the Charge-Transport Properties of Poly(Thiophene) and Poly(Dialkoxythiophene) Derivatives. Al Kurdi K; Gregory SA; Gordon MP; Ponder JF; Atassi A; Rinehart JM; Jones AL; Urban JJ; Reynolds JR; Barlow S; Marder SR; Yee SK ACS Appl Mater Interfaces; 2022 Jun; 14(25):29039-29051. PubMed ID: 35711091 [TBL] [Abstract][Full Text] [Related]
8. An Investigation of the Thermal Transitions and Physical Properties of Semiconducting PDPP4T:PDBPyBT Blend Films. Hajduk B; Jarka P; Tański T; Bednarski H; Janeczek H; Gnida P; Fijalkowski M Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499890 [TBL] [Abstract][Full Text] [Related]
9. The Molecular Weight Dependence of Thermoelectric Properties of Poly (3-Hexylthiophene). Mardi S; Pea M; Notargiacomo A; Yaghoobi Nia N; Di Carlo A; Reale A Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32204569 [TBL] [Abstract][Full Text] [Related]
10. Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films. Tran Nguyen NH; Nguyen TH; Liu YR; Aminzare M; Pham AT; Cho S; Wong DP; Chen KH; Seetawan T; Pham NK; Ta HK; Tran VC; Phan TB ACS Appl Mater Interfaces; 2016 Dec; 8(49):33916-33923. PubMed ID: 27960402 [TBL] [Abstract][Full Text] [Related]
11. Raising Dielectric Permittivity Mitigates Dopant-Induced Disorder in Conjugated Polymers. Upadhyaya M; Lu-Díaz M; Samanta S; Abdullah M; Dusoe K; Kittilstved KR; Venkataraman D; Akšamija Z Adv Sci (Weinh); 2021 Oct; 8(19):e2101087. PubMed ID: 34382366 [TBL] [Abstract][Full Text] [Related]
12. Manganese Oxide Nanoparticle as a New p-Type Dopant for High-Performance Polymer Field-Effect Transistors. Long DX; Choi EY; Noh YY ACS Appl Mater Interfaces; 2017 Jul; 9(29):24763-24770. PubMed ID: 28670900 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Electrical Conductivity and Mechanical Properties of Stretchable Thermoelectric Generators Formed by Doped Semiconducting Polymer/Elastomer Blends. Chang Y; Huang YH; Lin PS; Hong SH; Tung SH; Liu CL ACS Appl Mater Interfaces; 2024 Jan; 16(3):3764-3777. PubMed ID: 38226590 [TBL] [Abstract][Full Text] [Related]
14. Oxidation Control to Augment Interfacial Charge Transport in Te-P3HT Hybrid Materials for High Thermoelectric Performance. Shah SZH; Ding Z; Aabdin Z; Tjiu WW; Recatala-Gomez J; Dai H; Yang X; Maheswar RDV; Wu G; Hippalgaonkar K; Nandhakumar I; Kumar P Adv Sci (Weinh); 2024 Sep; 11(35):e2400802. PubMed ID: 39044364 [TBL] [Abstract][Full Text] [Related]
15. Interplay between Side Chain Density and Polymer Alignment: Two Competing Strategies for Enhancing the Thermoelectric Performance of P3HT Analogues. Gilhooly-Finn PA; Jacobs IE; Bardagot O; Zaffar Y; Lemaire A; Guchait S; Zhang L; Freeley M; Neal W; Richard F; Palma M; Banerji N; Sirringhaus H; Brinkmann M; Nielsen CB Chem Mater; 2023 Nov; 35(21):9029-9039. PubMed ID: 38027547 [TBL] [Abstract][Full Text] [Related]
16. The Critical Role of Dopant Cations in Electrical Conductivity and Thermoelectric Performance of n-Doped Polymers. Lu Y; Yu ZD; Liu Y; Ding YF; Yang CY; Yao ZF; Wang ZY; You HY; Cheng XF; Tang B; Wang JY; Pei J J Am Chem Soc; 2020 Sep; 142(36):15340-15348. PubMed ID: 32786750 [TBL] [Abstract][Full Text] [Related]
17. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
18. High Thermoelectric Power Factor of a Diketopyrrolopyrrole-Based Low Bandgap Polymer via Finely Tuned Doping Engineering. Jung IH; Hong CT; Lee UH; Kang YH; Jang KS; Cho SY Sci Rep; 2017 Mar; 7():44704. PubMed ID: 28317929 [TBL] [Abstract][Full Text] [Related]
19. Tuning the Thermoelectric Properties of a Conducting Polymer through Blending with Open-Shell Molecular Dopants. Tomlinson EP; Willmore MJ; Zhu X; Hilsmier SW; Boudouris BW ACS Appl Mater Interfaces; 2015 Aug; 7(33):18195-200. PubMed ID: 26263124 [TBL] [Abstract][Full Text] [Related]
20. Influence of crystallinity on the thermoelectric power factor of P3HT vapour-doped with F4TCNQ. Hynynen J; Kiefer D; Müller C RSC Adv; 2018 Jan; 8(3):1593-1599. PubMed ID: 35540921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]