These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31270649)

  • 21. The roseoflavin producer Streptomyces davaonensis has a high catalytic capacity and specific genetic adaptations with regard to the biosynthesis of riboflavin.
    Kißling L; Schneider C; Seibel K; Dorjjugder N; Busche T; Kalinowski J; Mack M
    Environ Microbiol; 2020 Aug; 22(8):3248-3265. PubMed ID: 32410282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of UDPG synthetic pathway improves ansamitocin production in Actinosynnem pretiosum.
    Fan Y; Zhao M; Wei L; Hu F; Imanaka T; Bai L; Hua Q
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2651-62. PubMed ID: 26585444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in riboflavin biosynthesis.
    Haase I; Gräwert T; Illarionov B; Bacher A; Fischer M
    Methods Mol Biol; 2014; 1146():15-40. PubMed ID: 24764086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic and Biosynthetic Diversity in Marine Myxobacteria.
    Gemperlein K; Zaburannyi N; Garcia R; La Clair JJ; Müller R
    Mar Drugs; 2018 Sep; 16(9):. PubMed ID: 30189599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis of riboflavin: structure and properties of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate reductase of Methanocaldococcus jannaschii.
    Chatwell L; Krojer T; Fidler A; Römisch W; Eisenreich W; Bacher A; Huber R; Fischer M
    J Mol Biol; 2006 Jun; 359(5):1334-51. PubMed ID: 16730025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of riboflavin.
    Bacher A; Eberhardt S; Eisenreich W; Fischer M; Herz S; Illarionov B; Kis K; Richter G
    Vitam Horm; 2001; 61():1-49. PubMed ID: 11153262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Marine actinobacteria: an important source of bioactive natural products.
    Manivasagan P; Kang KH; Sivakumar K; Li-Chan EC; Oh HM; Kim SK
    Environ Toxicol Pharmacol; 2014 Jul; 38(1):172-88. PubMed ID: 24959957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments.
    Yang N; Song F
    Curr Microbiol; 2018 Feb; 75(2):142-149. PubMed ID: 28918535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Origin of the ribityl side-chain of riboflavin from the ribose moiety of guanosine triphosphate in Pichia guilliermondii yeast.
    Miersch J; Logvinenko EM; Zakalsky AE; Shavlovsky GM; Reinbothe H
    Biochim Biophys Acta; 1978 Oct; 543(3):305-12. PubMed ID: 30490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase.
    Fischer M; Bacher A
    Arch Biochem Biophys; 2008 Jun; 474(2):252-65. PubMed ID: 18298940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lactic acid bacteria as a cell factory for riboflavin production.
    Thakur K; Tomar SK; De S
    Microb Biotechnol; 2016 Jul; 9(4):441-51. PubMed ID: 26686515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization.
    Ledesma-Amaro R; Serrano-Amatriain C; Jiménez A; Revuelta JL
    Microb Cell Fact; 2015 Oct; 14():163. PubMed ID: 26463172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18.
    Paulus C; Rebets Y; Tokovenko B; Nadmid S; Terekhova LP; Myronovskyi M; Zotchev SB; Rückert C; Braig S; Zahler S; Kalinowski J; Luzhetskyy A
    Sci Rep; 2017 Feb; 7():42382. PubMed ID: 28186197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and Application of Marine Microbial Omega-3 Polyunsaturated Fatty Acid Synthesis.
    Allemann MN; Allen EE
    Methods Enzymol; 2018; 605():3-32. PubMed ID: 29909829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of flavocoenzymes.
    Fischer M; Bacher A
    Nat Prod Rep; 2005 Jun; 22(3):324-50. PubMed ID: 16010344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.
    Giordano D; Coppola D; Russo R; Denaro R; Giuliano L; Lauro FM; di Prisco G; Verde C
    Adv Microb Physiol; 2015; 66():357-428. PubMed ID: 26210108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mining novel biosynthetic machineries of secondary metabolites from actinobacteria.
    Katsuyama Y
    Biosci Biotechnol Biochem; 2019 Sep; 83(9):1606-1615. PubMed ID: 31017524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Mechanism for Nitrosative Stress Tolerance Dependent on GTP Cyclohydrolase II Activity Involved in Riboflavin Synthesis of Yeast.
    Anam K; Nasuno R; Takagi H
    Sci Rep; 2020 Apr; 10(1):6015. PubMed ID: 32265460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B₂) Biosynthesis in Bacteria.
    Birkenmeier M; Mack M; Röder T
    Appl Biochem Biotechnol; 2015 Oct; 177(3):732-52. PubMed ID: 26280801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Description of a riboflavin biosynthetic gene variant prevalent in the phylum Proteobacteria.
    Brutinel ED; Dean AM; Gralnick JA
    J Bacteriol; 2013 Dec; 195(24):5479-86. PubMed ID: 24097946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.