These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 31271795)
1. In vitro investigation of the influence of nano-cellulose on starch and milk digestion and mineral adsorption. Liu L; Kong F Int J Biol Macromol; 2019 Sep; 137():1278-1285. PubMed ID: 31271795 [TBL] [Abstract][Full Text] [Related]
2. Influence of nanocellulose on in vitro digestion of whey protein isolate. Liu L; Kong F Carbohydr Polym; 2019 Apr; 210():399-411. PubMed ID: 30732777 [TBL] [Abstract][Full Text] [Related]
3. Characterization of lipid emulsions during in vitro digestion in the presence of three types of nanocellulose. Liu L; Kerr WL; Kong F J Colloid Interface Sci; 2019 Jun; 545():317-329. PubMed ID: 30897428 [TBL] [Abstract][Full Text] [Related]
4. Six weeks effect of different nanocellulose on blood lipid level and small intestinal morphology in mice. Lin YJ; Chen Y; Guo TL; Kong F Int J Biol Macromol; 2023 Feb; 228():498-505. PubMed ID: 36563823 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering. Zhou Y; Fujisawa S; Saito T; Isogai A Biomacromolecules; 2019 Feb; 20(2):750-757. PubMed ID: 30557007 [TBL] [Abstract][Full Text] [Related]
6. Effects of ingested nanocellulose and nanochitosan materials on carbohydrate digestion and absorption in an in vitro small intestinal epithelium model. Guo Z; DeLoid GM; Cao X; Bitounis D; Sampathkumar K; Woei Ng K; Joachim Loo SC; Philip D Environ Sci Nano; 2021 Sep; 8(2):2554-2568. PubMed ID: 34840801 [TBL] [Abstract][Full Text] [Related]
7. In vitro investigation of the influence of nano-fibrillated cellulose on lipid digestion and absorption. Liu L; Kong F Int J Biol Macromol; 2019 Oct; 139():361-366. PubMed ID: 31369785 [TBL] [Abstract][Full Text] [Related]
8. Influence of nano-fibrillated cellulose (NFC) on starch digestion and glucose absorption. Liu L; Kerr WL; Kong F; Dee DR; Lin M Carbohydr Polym; 2018 Sep; 196():146-153. PubMed ID: 29891281 [TBL] [Abstract][Full Text] [Related]
9. Evaluating mucoadhesion properties of three types of nanocellulose in the gastrointestinal tract in vitro and ex vivo. Lin YJ; Shatkin JA; Kong F Carbohydr Polym; 2019 Apr; 210():157-166. PubMed ID: 30732748 [TBL] [Abstract][Full Text] [Related]
10. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers. Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806 [TBL] [Abstract][Full Text] [Related]
11. The sol-gel transition of ultra-low solid content TEMPO-cellulose nanofibril/mixed-linkage β-glucan bionanocomposite gels. Arola S; Ansari M; Oksanen A; Retulainen E; Hatzikiriakos SG; Brumer H Soft Matter; 2018 Nov; 14(46):9393-9401. PubMed ID: 30420978 [TBL] [Abstract][Full Text] [Related]
12. Bacterial adhesion to polyvinylamine-modified nanocellulose films. Henschen J; Larsson PA; Illergård J; Ek M; Wågberg L Colloids Surf B Biointerfaces; 2017 Mar; 151():224-231. PubMed ID: 28013166 [TBL] [Abstract][Full Text] [Related]
13. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites. Kwon G; Lee K; Kim D; Jeon Y; Kim UJ; You J J Hazard Mater; 2020 Nov; 398():123100. PubMed ID: 32768841 [TBL] [Abstract][Full Text] [Related]
14. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect. Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170 [TBL] [Abstract][Full Text] [Related]
15. TEMPO-oxidized cellulose nanofiber (TOCN) decorated macroporous silica particles: Synthesis, characterization, and their application in protein adsorption. Rahmatika AM; Goi Y; Kitamura T; Widiyastuti W; Ogi T Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110033. PubMed ID: 31546405 [TBL] [Abstract][Full Text] [Related]
16. All-cellulose functional membranes for water treatment: Adsorption of metal ions and catalytic decolorization of dyes. Georgouvelas D; Abdelhamid HN; Li J; Edlund U; Mathew AP Carbohydr Polym; 2021 Jul; 264():118044. PubMed ID: 33910746 [TBL] [Abstract][Full Text] [Related]
17. Influence of native cellulose, microcrystalline cellulose and soluble cellodextrin on inhibition of starch digestibility. Zhu Y; Wen P; Wang P; Li Y; Tong Y; Ren F; Liu S Int J Biol Macromol; 2022 Oct; 219():491-499. PubMed ID: 35932809 [TBL] [Abstract][Full Text] [Related]
18. The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. Nsor-Atindana J; Douglas Goff H; Liu W; Chen M; Zhong F Carbohydr Polym; 2018 Nov; 200():436-445. PubMed ID: 30177185 [TBL] [Abstract][Full Text] [Related]
19. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties. Hassan SH; Velayutham TS; Chen YW; Lee HV Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185 [TBL] [Abstract][Full Text] [Related]
20. Enzyme Activities of Five White-Rot Fungi in the Presence of Nanocellulose. Reyes C; Poulin A; Nyström G; Schwarze FWMR; Ribera J J Fungi (Basel); 2021 Mar; 7(3):. PubMed ID: 33803754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]