BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31271795)

  • 1. In vitro investigation of the influence of nano-cellulose on starch and milk digestion and mineral adsorption.
    Liu L; Kong F
    Int J Biol Macromol; 2019 Sep; 137():1278-1285. PubMed ID: 31271795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of nanocellulose on in vitro digestion of whey protein isolate.
    Liu L; Kong F
    Carbohydr Polym; 2019 Apr; 210():399-411. PubMed ID: 30732777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of lipid emulsions during in vitro digestion in the presence of three types of nanocellulose.
    Liu L; Kerr WL; Kong F
    J Colloid Interface Sci; 2019 Jun; 545():317-329. PubMed ID: 30897428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six weeks effect of different nanocellulose on blood lipid level and small intestinal morphology in mice.
    Lin YJ; Chen Y; Guo TL; Kong F
    Int J Biol Macromol; 2023 Feb; 228():498-505. PubMed ID: 36563823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ingested nanocellulose and nanochitosan materials on carbohydrate digestion and absorption in an in vitro small intestinal epithelium model.
    Guo Z; DeLoid GM; Cao X; Bitounis D; Sampathkumar K; Woei Ng K; Joachim Loo SC; Philip D
    Environ Sci Nano; 2021 Sep; 8(2):2554-2568. PubMed ID: 34840801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering.
    Zhou Y; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2019 Feb; 20(2):750-757. PubMed ID: 30557007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro investigation of the influence of nano-fibrillated cellulose on lipid digestion and absorption.
    Liu L; Kong F
    Int J Biol Macromol; 2019 Oct; 139():361-366. PubMed ID: 31369785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nano-fibrillated cellulose (NFC) on starch digestion and glucose absorption.
    Liu L; Kerr WL; Kong F; Dee DR; Lin M
    Carbohydr Polym; 2018 Sep; 196():146-153. PubMed ID: 29891281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating mucoadhesion properties of three types of nanocellulose in the gastrointestinal tract in vitro and ex vivo.
    Lin YJ; Shatkin JA; Kong F
    Carbohydr Polym; 2019 Apr; 210():157-166. PubMed ID: 30732748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers.
    Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H
    NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sol-gel transition of ultra-low solid content TEMPO-cellulose nanofibril/mixed-linkage β-glucan bionanocomposite gels.
    Arola S; Ansari M; Oksanen A; Retulainen E; Hatzikiriakos SG; Brumer H
    Soft Matter; 2018 Nov; 14(46):9393-9401. PubMed ID: 30420978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial adhesion to polyvinylamine-modified nanocellulose films.
    Henschen J; Larsson PA; Illergård J; Ek M; Wågberg L
    Colloids Surf B Biointerfaces; 2017 Mar; 151():224-231. PubMed ID: 28013166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites.
    Kwon G; Lee K; Kim D; Jeon Y; Kim UJ; You J
    J Hazard Mater; 2020 Nov; 398():123100. PubMed ID: 32768841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMPO-oxidized cellulose nanofiber (TOCN) decorated macroporous silica particles: Synthesis, characterization, and their application in protein adsorption.
    Rahmatika AM; Goi Y; Kitamura T; Widiyastuti W; Ogi T
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110033. PubMed ID: 31546405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-cellulose functional membranes for water treatment: Adsorption of metal ions and catalytic decolorization of dyes.
    Georgouvelas D; Abdelhamid HN; Li J; Edlund U; Mathew AP
    Carbohydr Polym; 2021 Jul; 264():118044. PubMed ID: 33910746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of native cellulose, microcrystalline cellulose and soluble cellodextrin on inhibition of starch digestibility.
    Zhu Y; Wen P; Wang P; Li Y; Tong Y; Ren F; Liu S
    Int J Biol Macromol; 2022 Oct; 219():491-499. PubMed ID: 35932809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion.
    Nsor-Atindana J; Douglas Goff H; Liu W; Chen M; Zhong F
    Carbohydr Polym; 2018 Nov; 200():436-445. PubMed ID: 30177185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties.
    Hassan SH; Velayutham TS; Chen YW; Lee HV
    Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme Activities of Five White-Rot Fungi in the Presence of Nanocellulose.
    Reyes C; Poulin A; Nyström G; Schwarze FWMR; Ribera J
    J Fungi (Basel); 2021 Mar; 7(3):. PubMed ID: 33803754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.