These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31271982)

  • 1. Interaction of zero valent copper nanoparticles with algal cells under simulated natural conditions: Particle dissolution kinetics, uptake and heteroaggregation.
    Arenas-Lago D; Monikh FA; Vijver MG; Peijnenburg WJGM
    Sci Total Environ; 2019 Nov; 689():133-140. PubMed ID: 31271982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters: Simultaneous effects of pH, NOM and ionic strength.
    Arenas-Lago D; Abdolahpur Monikh F; Vijver MG; Peijnenburg WJGM
    Chemosphere; 2019 Jul; 226():841-850. PubMed ID: 30974377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion.
    Liu S; Liu Y; Pan B; He Y; Li B; Zhou D; Xiao Y; Qiu H; Vijver MG; Peijnenburg WJGM
    Chemosphere; 2020 Apr; 245():125612. PubMed ID: 31864948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative Contributions of Copper Oxide Nanoparticles and Dissolved Copper to Cu Uptake Kinetics of Gulf Killifish (Fundulus grandis) Embryos.
    Jiang C; Castellon BT; Matson CW; Aiken GR; Hsu-Kim H
    Environ Sci Technol; 2017 Feb; 51(3):1395-1404. PubMed ID: 28081364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles.
    Adeleye AS; Conway JR; Perez T; Rutten P; Keller AA
    Environ Sci Technol; 2014 Nov; 48(21):12561-8. PubMed ID: 25295836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles - A tentative exposure scenario.
    Pradhan S; Hedberg J; Rosenqvist J; Jonsson CM; Wold S; Blomberg E; Odnevall Wallinder I
    PLoS One; 2018; 13(2):e0192553. PubMed ID: 29420670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.
    Praetorius A; Labille J; Scheringer M; Thill A; Hungerbühler K; Bottero JY
    Environ Sci Technol; 2014 Sep; 48(18):10690-8. PubMed ID: 25127331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation behaviour of engineered nanoparticles in natural waters: characterising aggregate structure using on-line laser light scattering.
    Chekli L; Zhao YX; Tijing LD; Phuntsho S; Donner E; Lombi E; Gao BY; Shon HK
    J Hazard Mater; 2015 Mar; 284():190-200. PubMed ID: 25463233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation, dissolution, and transformation of copper nanoparticles in natural waters.
    Conway JR; Adeleye AS; Gardea-Torresdey J; Keller AA
    Environ Sci Technol; 2015 Mar; 49(5):2749-56. PubMed ID: 25664878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-Specific Toxicity of Copper Nanoparticles to Soybean (Glycine max L.): Effects of Nanoparticle Concentration and Natural Organic Matter.
    Xiao Y; Tang W; Peijnenburg WJGM
    Environ Toxicol Chem; 2021 Oct; 40(10):2825-2835. PubMed ID: 34289521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?
    Abdolahpur Monikh F; Arenas-Lago D; Porcal P; Grillo R; Zhang P; Guo Z; Vijver MG; J G M Peijnenburg W
    Nanotoxicology; 2020 Apr; 14(3):310-325. PubMed ID: 31775550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects.
    Yu S; Liu J; Yin Y; Shen M
    J Environ Sci (China); 2018 Jan; 63():198-217. PubMed ID: 29406103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of water chemistry on stability, aggregation, and dissolution of uncoated and carbon-coated copper nanoparticles.
    Tegenaw A; Sorial GA; Sahle-Demessie E; Han C
    Environ Res; 2020 Aug; 187():109700. PubMed ID: 32480027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of particle size of nanoscale zero-valent copper on inorganic phosphorus adsorption-desorption in a volcanic ash soil.
    Suazo-Hernández J; Urdiales C; Poblete-Grant P; Pesenti H; Cáceres-Jensen L; Sarkar B; Bolan N; de la Luz Mora M
    Chemosphere; 2023 Nov; 340():139836. PubMed ID: 37595691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles of WC-Co, WC, Co and Cu of relevance for traffic wear particles - Particle stability and reactivity in synthetic surface water and influence of humic matter.
    Hedberg YS; Hedberg JF; Isaksson S; Mei N; Blomberg E; Wold S; Odnevall Wallinder I
    Environ Pollut; 2017 May; 224():275-288. PubMed ID: 28196769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of water chemistry on the behavior and fate of copper nanoparticles.
    Xiao Y; Vijver MG; Peijnenburg WJGM
    Environ Pollut; 2018 Mar; 234():684-691. PubMed ID: 29227954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod.
    Hanna SK; Miller RJ; Zhou D; Keller AA; Lenihan HS
    Aquat Toxicol; 2013 Oct; 142-143():441-6. PubMed ID: 24121101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered nanoparticles and organic matter: a review of the state-of-the-art.
    Grillo R; Rosa AH; Fraceto LF
    Chemosphere; 2015 Jan; 119():608-619. PubMed ID: 25128893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions.
    Hu JD; Zevi Y; Kou XM; Xiao J; Wang XJ; Jin Y
    Sci Total Environ; 2010 Jul; 408(16):3477-89. PubMed ID: 20421125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.