BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31272050)

  • 1. Effect of pH on the reaction between naringenin and methylglyoxal: A kinetic study.
    Zhu H; Poojary MM; Andersen ML; Lund MN
    Food Chem; 2019 Nov; 298():125086. PubMed ID: 31272050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of molecular structure of polyphenols on the kinetics of the trapping reactions with methylglyoxal.
    Zhu H; Poojary MM; Andersen ML; Lund MN
    Food Chem; 2020 Jul; 319():126500. PubMed ID: 32146288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of pH and amino acids on the formation of methylglyoxal in a glucose-amino acid model system.
    Yu P; Xu XB; Yu SJ
    J Sci Food Agric; 2017 Aug; 97(10):3159-3165. PubMed ID: 27885683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of reaction products of 5-hydroxytryptamine with methylglyoxal and glyoxal by liquid chromatography/tandem mass spectrometry.
    Sai Sachin L; Nagarjuna Chary R; Pavankumar P; Prabhakar S
    Rapid Commun Mass Spectrom; 2018 Sep; 32(17):1529-1539. PubMed ID: 29874403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species.
    Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT
    Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Methylglyoxal-Induced Glycation on the Composition and Structure of β-Lactoglobulin and α-Lactalbumin.
    Krämer AC; Davies MJ
    J Agric Food Chem; 2019 Jan; 67(2):699-710. PubMed ID: 30577692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal.
    Lv L; Shao X; Chen H; Ho CT; Sang S
    Chem Res Toxicol; 2011 Apr; 24(4):579-86. PubMed ID: 21344933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LC-MS/MS Analysis of Reaction Products of Arginine/Methylarginines with Methylglyoxal/Glyoxal.
    Rodda R; Addipilli R; Kannoujia J; Lingampelly SS; Sripadi P
    Chem Res Toxicol; 2023 Nov; 36(11):1768-1777. PubMed ID: 37888804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal.
    Sun YP; Gu JF; Tan XB; Wang CF; Jia XB; Feng L; Liu JP
    Mol Med Rep; 2016 Feb; 13(2):1475-86. PubMed ID: 26718010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells.
    Hu TY; Liu CL; Chyau CC; Hu ML
    J Agric Food Chem; 2012 Aug; 60(33):8190-6. PubMed ID: 22849714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping of Carbonyl Compounds by Epicatechin: Reaction Kinetics and Identification of Epicatechin Adducts in Stored UHT Milk.
    Zhu H; Poojary MM; Andersen ML; Lund MN
    J Agric Food Chem; 2020 Jul; 68(29):7718-7726. PubMed ID: 32597649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread, Reversible Cysteine Modification by Methylglyoxal Regulates Metabolic Enzyme Function.
    Coukos JS; Lee CW; Pillai KS; Liu KJ; Moellering RE
    ACS Chem Biol; 2023 Jan; 18(1):91-101. PubMed ID: 36562291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass Spectrometric Analysis of Glyoxal and Methylglyoxal-Induced Modifications in Human Hemoglobin from Poorly Controlled Type 2 Diabetes Mellitus Patients.
    Chen HJ; Chen YC; Hsiao CF; Chen PF
    Chem Res Toxicol; 2015 Dec; 28(12):2377-89. PubMed ID: 26517015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions.
    Lo CY; Li S; Tan D; Pan MH; Sang S; Ho CT
    Mol Nutr Food Res; 2006 Dec; 50(12):1118-28. PubMed ID: 17103374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra performance liquid chromatography-mass spectrometric determination of the site specificity of modification of beta-casein by glucose and methylglyoxal.
    Lima M; Moloney C; Ames JM
    Amino Acids; 2009 Mar; 36(3):475-81. PubMed ID: 18516664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Reaction Products and Mechanisms between Serotonin and Methylglyoxal in Model Reactions and Mice.
    Tang Y; Hu C; Sang S
    J Agric Food Chem; 2020 Feb; 68(8):2437-2444. PubMed ID: 32011875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual effects of propyl gallate and its methylglyoxal adduct on carbonyl stress and oxidative stress.
    Cui H; Tao F; Hou Y; Lu Y; Zheng T; Sang S; Lv L
    Food Chem; 2018 Nov; 265():227-232. PubMed ID: 29884377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems.
    Kong Y; Li X; Zheng T; Lv L
    Food Chem; 2015 Sep; 183():36-42. PubMed ID: 25863607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.