These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 31272182)

  • 1. Force-displacement relations at compression of dsDNA macromolecules.
    Bleha T; Cifra P
    J Chem Phys; 2019 Jul; 151(1):014901. PubMed ID: 31272182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles.
    Manca F; Giordano S; Palla PL; Zucca R; Cleri F; Colombo L
    J Chem Phys; 2012 Apr; 136(15):154906. PubMed ID: 22519349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overstretching partially alkyne functionalized dsDNA using near infrared optical tweezers.
    Raudsepp A; Kent LM; Hall SB; Williams MAK
    Biochem Biophys Res Commun; 2018 Feb; 496(3):975-980. PubMed ID: 29339160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the conformational distributions of subpersistence length DNA.
    Mastroianni AJ; Sivak DA; Geissler PL; Alivisatos AP
    Biophys J; 2009 Sep; 97(5):1408-17. PubMed ID: 19720029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretching and compression of DNA by external forces under nanochannel confinement.
    Bleha T; Cifra P
    Soft Matter; 2018 Feb; 14(7):1247-1259. PubMed ID: 29363709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessing the dynamics of end-grafted flexible polymer chains by atomic force-electrochemical microscopy. Theoretical modeling of the approach curves by the elastic bounded diffusion model and Monte Carlo simulations. Evidence for compression-induced lateral chain escape.
    Abbou J; Anne A; Demaille C
    J Phys Chem B; 2006 Nov; 110(45):22664-75. PubMed ID: 17092014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compression and Stretching of Single DNA Molecules under Channel Confinement.
    Bleha T; Cifra P
    J Phys Chem B; 2020 Mar; 124(9):1691-1702. PubMed ID: 32045238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical measurement of mechanical forces inside short DNA loops.
    Shroff H; Sivak D; Siegel JJ; McEvoy AL; Siu M; Spakowitz A; Geissler PL; Liphardt J
    Biophys J; 2008 Mar; 94(6):2179-86. PubMed ID: 18065484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial compression elasticity of single DNA molecules studied by vibrating scanning polarization force microscopy.
    Zhou XF; Sun JL; An HJ; Guo YC; Fang HP; Su C; Xiao XD; Huang WH; Li MQ; Shen WQ; Hu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):062901. PubMed ID: 16089796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation Assisted Analysis of the Intrinsic Stiffness for Short DNA Molecules Imaged with Scanning Atomic Force Microscopy.
    Wang H; Milstein JN
    PLoS One; 2015; 10(11):e0142277. PubMed ID: 26535902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA elasticity from coarse-grained simulations: The effect of groove asymmetry.
    Skoruppa E; Laleman M; Nomidis SK; Carlon E
    J Chem Phys; 2017 Jun; 146(21):214902. PubMed ID: 28595422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistence length of DNA molecules confined in nanochannels.
    Cifra P; Benková Z; Bleha T
    Phys Chem Chem Phys; 2010 Aug; 12(31):8934-42. PubMed ID: 20589298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate nanoscale flexibility measurement of DNA and DNA-protein complexes by atomic force microscopy in liquid.
    Murugesapillai D; Bouaziz S; Maher LJ; Israeloff NE; Cameron CE; Williams MC
    Nanoscale; 2017 Aug; 9(31):11327-11337. PubMed ID: 28762410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level.
    Herrero-Galán E; Fuentes-Perez ME; Carrasco C; Valpuesta JM; Carrascosa JL; Moreno-Herrero F; Arias-Gonzalez JR
    J Am Chem Soc; 2013 Jan; 135(1):122-31. PubMed ID: 23214411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved measurement of dsDNA elasticity using AFM.
    Nguyen TH; Lee SM; Na K; Yang S; Kim J; Yoon ES
    Nanotechnology; 2010 Feb; 21(7):75101. PubMed ID: 20090198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the dynamic differential stiffness of dsDNA interacting with RecA in the enthalpic regime.
    Lien CH; Wei MT; Tseng TY; Lee CD; Wang C; Wang TF; Ou-Yang HD; Chiou A
    Opt Express; 2009 Oct; 17(22):20376-85. PubMed ID: 19997266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers.
    Mameren Jv; Modesti M; Kanaar R; Wyman C; Wuite GJ; Peterman EJ
    Biophys J; 2006 Oct; 91(8):L78-80. PubMed ID: 16920830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force spectroscopy of chromatin fibers: extracting energetics and structural information from Monte Carlo simulations.
    Kepper N; Ettig R; Stehr R; Marnach S; Wedemann G; Rippe K
    Biopolymers; 2011 Jul; 95(7):435-47. PubMed ID: 21294108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force spectroscopy of polymer desorption: theory and molecular dynamics simulations.
    Paturej J; Dubbeldam JL; Rostiashvili VG; Milchev A; Vilgis TA
    Soft Matter; 2014 Apr; 10(16):2785-99. PubMed ID: 24667897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trehalose facilitates DNA melting: a single-molecule optical tweezers study.
    Bezrukavnikov S; Mashaghi A; van Wijk RJ; Gu C; Yang LJ; Gao YQ; Tans SJ
    Soft Matter; 2014 Oct; 10(37):7269-77. PubMed ID: 25096217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.