These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31272186)

  • 1. Quantum dynamics of a molecular emitter strongly coupled with surface plasmon polaritons: A macroscopic quantum electrodynamics approach.
    Wang S; Scholes GD; Hsu LY
    J Chem Phys; 2019 Jul; 151(1):014105. PubMed ID: 31272186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. II. Polariton-mediated population dynamics in a dimer system.
    Chuang YT; Wang S; Hsu LY
    J Chem Phys; 2022 Dec; 157(23):234109. PubMed ID: 36550029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of molecular emission power spectra. I. Macroscopic quantum electrodynamics formalism.
    Wang S; Lee MW; Chuang YT; Scholes GD; Hsu LY
    J Chem Phys; 2020 Nov; 153(18):184102. PubMed ID: 33187405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Born-Huang expansion under macroscopic quantum electrodynamics framework.
    Tsai HS; Shen CE; Hsu LY
    J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38597310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons.
    Wang S; Scholes GD; Hsu LY
    J Phys Chem Lett; 2020 Aug; 11(15):5948-5955. PubMed ID: 32619095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic theory of exciton-polariton model involving multiple molecules: Macroscopic quantum electrodynamics formulation and essence of direct intermolecular interactions.
    Chuang YT; Hsu LY
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38501476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring plasmonic effect on exciton transport: A theoretical insight from macroscopic quantum electrodynamics.
    Weng SH; Hsu LY; Ding W
    J Chem Phys; 2023 Oct; 159(15):. PubMed ID: 37843060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Exciton-Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture.
    Babaze A; Esteban R; Borisov AG; Aizpurua J
    Nano Lett; 2021 Oct; 21(19):8466-8473. PubMed ID: 34529442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe
    Wurdack M; Lundt N; Klaas M; Baumann V; Kavokin AV; Höfling S; Schneider C
    Nat Commun; 2017 Aug; 8(1):259. PubMed ID: 28811462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple but accurate estimation of light-matter coupling strength and optical loss for a molecular emitter coupled with photonic modes.
    Wang S; Chuang YT; Hsu LY
    J Chem Phys; 2021 Oct; 155(13):134117. PubMed ID: 34624977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.
    Vu N; Mejia-Rodriguez D; Bauman NP; Panyala A; Mutlu E; Govind N; Foley JJ
    J Chem Theory Comput; 2024 Feb; 20(3):1214-1227. PubMed ID: 38291561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. I. Formalism.
    Wang S; Chuang YT; Hsu LY
    J Chem Phys; 2022 Nov; 157(18):184107. PubMed ID: 36379764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of molecular emission power spectra. II. Angle, frequency, and distance dependence of electromagnetic environment factor of a molecular emitter in plasmonic environments.
    Lee MW; Chuang YT; Hsu LY
    J Chem Phys; 2021 Aug; 155(7):074101. PubMed ID: 34418923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strongly coupled slow-light polaritons in one-dimensional disordered localized states.
    Gao J; Combrie S; Liang B; Schmitteckert P; Lehoucq G; Xavier S; Xu X; Busch K; Huffaker DL; De Rossi A; Wong CW
    Sci Rep; 2013; 3():1994. PubMed ID: 23771242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-temperature exciton-polaritons with two-dimensional WS2.
    Flatten LC; He Z; Coles DM; Trichet AA; Powell AW; Taylor RA; Warner JH; Smith JM
    Sci Rep; 2016 Sep; 6():33134. PubMed ID: 27640988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-dependent strong coupling between surface plasmon polaritons and excitons in an organic-dye-doped nanostructure.
    Zhang K; Chen TY; Shi WB; Li CY; Fan RH; Wang QJ; Peng RW; Wang M
    Opt Lett; 2017 Jul; 42(14):2834-2837. PubMed ID: 28708181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons.
    Dunkelberger AD; Spann BT; Fears KP; Simpkins BS; Owrutsky JC
    Nat Commun; 2016 Nov; 7():13504. PubMed ID: 27874010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsically ultrastrong plasmon-exciton interactions in crystallized films of carbon nanotubes.
    Ho PH; Farmer DB; Tulevski GS; Han SJ; Bishop DM; Gignac LM; Bucchignano J; Avouris P; Falk AL
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12662-12667. PubMed ID: 30459274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evanescent-Vacuum-Enhanced Photon-Exciton Coupling and Fluorescence Collection.
    Ren J; Gu Y; Zhao D; Zhang F; Zhang T; Gong Q
    Phys Rev Lett; 2017 Feb; 118(7):073604. PubMed ID: 28256881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons.
    Lee MW; Hsu LY
    J Phys Chem Lett; 2020 Aug; 11(16):6796-6804. PubMed ID: 32787214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.